
Wenxi Wang

University of Virginia

wenxiw@virginia.edu

Alloy

1

Alloy

Alloy Language:
 build models, requirements, specifications, software design

 1) Lightweight: small and easy to use, and capable of expressing
 common properties tersely and naturally

 2) Precise: having a simple and uniform mathematical semantics

Alloy Analyzer:
 fully automated software model analysis

Overview

2

Alloy

Alloy Language:
• Provides precise description of artifacts
• Good Documentation
• Provides higher level of abstraction
• Helps describe properties that we cannot (easily) express in source

code

Alloy Analyzer:
• Enables machine reasoning
• Helps eliminate/reduce ambiguities, inconsistencies, and

incompleteness

Why we need Alloy?

Declarative Language!

3

Alloy

“Everybody likes a winner”
● Ambiguous?
● Incomplete?

Precise meaning?
● all p: Person | some w: Winner | p.likes(w)
● all p: Person | all w: Winner | p.likes(w)
● some w: Winner | all p: Person | p.likes(w)

Why we need Alloy?

4

Alloy

A lot of Applications over the past two decades

1. Network and Web Security Modeling and Analysis

2. Formal modeling and analysis of a flash filesystem in Alloy

3. Efficient re-resolution of specifications for evolving software architectures

4. Specification of a distributed spanning tree

5. Declarative testing for distributed programs

6. Analyzing the Fundamental Liveness Property of the Chord Protocol

 ... …

5

Alloy

Alloy in General

Alloy is general enough that it can model

• any (finite) domain of individuals and

• any relations between them

6

Alloy

Alloy Language:
 build models, requirements, specifications, design

 1) Lightweight: small and easy to use, and capable of expressing
 common properties naturally

 2) Precise: having a simple and uniform mathematical semantics

Alloy Analyzer:
 fully automated software model analysis

Overview

7

An atom is a primitive entity that is
– indivisible: it cannot be broken down into smaller parts
– immutable: it does not change over time
– uninterpreted: it does not have any built-in property (the way
numbers do for example)

A relation is a structure that relates atoms

– It is a set of tuples of the same type

Alloy Language

Atoms and Relations

8

Atoms and Relations: Example

Alloy Language

Everything in Alloy is
built from relations

9

Main components of Alloy Model

1. Signatures and Fields

2. Predicates

3. Facts

4. Commands and scopes

Alloy Language

10

Main components of Alloy Model

1. Signatures and Fields

2. Predicates

3. Facts

4. Commands and scopes

Alloy Language

11

Signatures and Fields
1. Signatures: introduces a set of atoms

2. Fields: declares relations

Example:
1. Introduces three sets named A, B, C, respectively
 sig A {} sig B {} sig C {}
2. Declare Binary Relation:
 sig A { f1: B } // f1 is a field, a binary relation of type A x B
3. Ternary Relation:
 sig A { f2: B -> C } // f2 is a field, a ternary relation of type A x B x C

Alloy Language

Unary relation

12

Cardinality Constraints: constrain the sizes of sets

– some e //e is non-empty
– no e //e is empty
– lone e //e has at most one tuple
– one e //e has exactly one tuple

Example:
one sig List { // Declare one single linked-list
 header: lone Node // with at most one header n
}
sig Node {
 next: lone Node // each node has at most one next node
}

Alloy Language

13

Cardinality Constraints: constrain the sizes of sets

– some e //e is non-empty
– no e //e is empty
– lone e //e has at most one tuple
– one e //e has exactly one tuple

Example:
one sig List { // Declare one single linked-list
 header: lone Node // with at most one header n
}
sig Node {
 next: lone Node // each node has at most one next node
}

Alloy Language

14

Main components of Alloy Model

1. Signatures and Fields

2. Predicates

3. Facts

4. Commands and scopes

Alloy Language

15

Facts and Predicates

// All nodes are reachable from the header node
fact Reachable {

}

Alloy models can be refined further by adding formulas expressing
additional constraints over signatures and relations
- Facts: the constraints that Alloy model must satisfy
- Predicates: optional constraints that Alloy model can satisfy

Example:
one sig List {
 header: lone Node
}
sig Node {
 next: lone Node
}

Alloy Language

16

Facts and Predicates

Relational Operators

Alloy Language

17

Relational Operators: transitive closure

Given a binary relation r, the transitive closure of r,
denoted ^r, includes all elements x and y such that x can
reach y by following one or more steps of r.

Alloy Language

18

Relational Operators: reflexive-transitive closure

reflexive-transitive closure of a relation *r is the transitive
closure that also includes reflexive connections.

Alloy Language

19

Relational Operators

// All nodes are reachable from the header node
fact Reachable {
 Node = List.header.*next
}

Example:
one sig List {
 header: lone Node
}
sig Node {
 next: lone Node
}

Alloy Language

20

Relational Operators: dot join

Alloy Language

21

Facts and Predicates

Logical Operators Set Operators

Alloy Language

22

Main components of Alloy Model

1. Signatures and Fields

2. Predicates

3. Facts

4. Commands and scopes

Alloy Language

23

Run Commands and Scopes
To analyze a model, you add a run command and instruct Alloy Analyzer to
execute a predicate
– the run command
 tells the tool to search for an instance that satisfy all facts and the predicate
– you may also give a scope to signatures
 bounds the size of instances that will be considered

Predicate Reachable {
 Node = List.header.*next
}

Example:
one sig List {
 header: lone Node
}
sig Node {
 next: lone Node
}

run RepOk for 3

Alloy Language

24

Alloy

Alloy Language:
 build models, requirements, specifications, design

 1) Lightweight: small and easy to use, and capable of expressing
 common properties tersely and naturally

 2) Precise: having a simple and uniform mathematical semantics

Alloy Analyzer:
 fully automated software model analysis

Overview

25

Alloy Analyzer

26

Alloy Analyzer

Let’s implement an Alloy model!

27

Alloy

Improve analysis using ML
• Compiler optimizations
• Incremental analysis
• SAT optimizations
• Symmetry breaking

Solve new ML applications using Alloy
• Can you model ML-related problems from your domain?
• ML applications:

• verify a certain property of Neural network models
• Synthesis NN model with Alloy
• Generate test cases for testing NN models

Research Topics

	Slide 0: Alloy
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

