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Alloy

Alloy Language: 
 build models, requirements, specifications, software design

 1) Lightweight: small and easy to use, and capable of expressing 
 common properties tersely and naturally 

 2) Precise: having a simple and uniform mathematical semantics 

Alloy Analyzer: 
 fully automated software model analysis

Overview
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Alloy

Alloy Language: 
• Provides precise description of artifacts
• Good Documentation
• Provides higher level of abstraction
• Helps describe properties that we cannot (easily) express in source 

code

Alloy Analyzer: 
• Enables machine reasoning
• Helps eliminate/reduce ambiguities, inconsistencies, and 

incompleteness

Why we need Alloy?

Declarative Language!
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Alloy

“Everybody likes a winner”
● Ambiguous?
● Incomplete?

Precise meaning?
● all p: Person | some w: Winner | p.likes(w)
● all p: Person | all w: Winner | p.likes(w)
● some w: Winner | all p: Person | p.likes(w)

Why we need Alloy?
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Alloy

A lot of Applications over the past two decades

1. Network and Web Security Modeling and Analysis

2. Formal modeling and analysis of a flash filesystem in Alloy

3. Efficient re-resolution of specifications for evolving software architectures

4. Specification of a distributed spanning tree

5. Declarative testing for distributed programs

6. Analyzing the Fundamental Liveness Property of the Chord Protocol

      ... …
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Alloy

Alloy in General

Alloy is general enough that it can model

• any (finite) domain of individuals and 

• any relations between them 
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Alloy

Alloy Language: 
 build models, requirements, specifications, design

 1) Lightweight: small and easy to use, and capable of expressing 
 common properties naturally 

 2) Precise: having a simple and uniform mathematical semantics 

Alloy Analyzer: 
 fully automated software model analysis

Overview
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An atom is a primitive entity that is 
– indivisible: it cannot be broken down into smaller parts 
– immutable: it does not change over time 
– uninterpreted: it does not have any built-in property (the way 
numbers do for example) 

A relation is a structure that relates atoms 

– It is a set of tuples of the same type

Alloy Language

Atoms and Relations
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Atoms and Relations: Example 

Alloy Language

Everything in Alloy is 
built from relations
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Main components of Alloy Model

1. Signatures and Fields

2. Predicates

3. Facts

4. Commands and scopes

Alloy Language
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Main components of Alloy Model

1. Signatures and Fields

2. Predicates

3. Facts

4. Commands and scopes

Alloy Language
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Signatures and Fields
1. Signatures: introduces a set of atoms

2. Fields: declares relations

Example: 
1. Introduces three sets named A, B, C, respectively
    sig A {}   sig B {} sig C {} 
2. Declare Binary Relation: 
    sig A { f1: B }    // f1 is a field, a binary relation of type A x B
3. Ternary Relation: 
    sig A { f2: B -> C } // f2 is a field, a ternary relation of type A x B x C

Alloy Language

Unary relation
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Cardinality Constraints: constrain the sizes of sets

– some e       //e is non-empty 
– no e //e is empty 
– lone e //e has at most one tuple 
– one e //e has exactly one tuple

Example: 
one sig List {         // Declare one single linked-list 
   header: lone Node          // with at most one header n 
}
sig Node {  
  next: lone Node             // each node has at most one next node
}

Alloy Language
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Cardinality Constraints: constrain the sizes of sets

– some e       //e is non-empty 
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Main components of Alloy Model

1. Signatures and Fields

2. Predicates

3. Facts

4. Commands and scopes

Alloy Language
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Facts and Predicates

// All nodes are reachable from the header node
fact Reachable {
  
}

Alloy models can be refined further by adding formulas expressing 
additional constraints over signatures and relations
- Facts: the constraints that Alloy model must satisfy
- Predicates: optional constraints that Alloy model can satisfy

Example: 
one sig List {   
  header: lone Node
}
sig Node {  
  next: lone Node
}

Alloy Language



16

Facts and Predicates

Relational Operators

Alloy Language
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Relational Operators: transitive closure

Given a binary relation r, the transitive closure of r, 
denoted ^r, includes all elements x and y such that x can 
reach y by following one or more steps of r.

Alloy Language
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Relational Operators: reflexive-transitive closure

reflexive-transitive closure of a relation *r is the transitive 
closure that also includes reflexive connections.

Alloy Language
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Relational Operators

// All nodes are reachable from the header node
fact Reachable {
  Node = List.header.*next
}

Example: 
one sig List {   
  header: lone Node
}
sig Node {  
  next: lone Node
}

Alloy Language
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Relational Operators: dot join

Alloy Language
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Facts and Predicates

Logical Operators Set Operators

Alloy Language
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Main components of Alloy Model

1. Signatures and Fields

2. Predicates

3. Facts

4. Commands and scopes

Alloy Language
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Run Commands and Scopes
To analyze a model, you add a run command and instruct Alloy Analyzer to 
execute a predicate
– the run command 
   tells the tool to search for an instance that satisfy all facts and the predicate
– you may also give a scope to signatures 
   bounds the size of instances that will be considered

Predicate Reachable {
  Node = List.header.*next
}

Example: 
one sig List {   
  header: lone Node
}
sig Node {  
  next: lone Node
}

run RepOk for 3

Alloy Language
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Alloy

Alloy Language: 
 build models, requirements, specifications, design

 1) Lightweight: small and easy to use, and capable of expressing 
 common properties tersely and naturally 

 2) Precise: having a simple and uniform mathematical semantics 

Alloy Analyzer: 
 fully automated software model analysis

Overview
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Alloy Analyzer
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Alloy Analyzer

Let’s implement an Alloy model!
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Alloy

Improve analysis using ML
• Compiler optimizations
• Incremental analysis
• SAT optimizations
• Symmetry breaking

Solve new ML applications using Alloy
• Can you model ML-related problems from your domain?
• ML applications: 

• verify a certain property of Neural network models
• Synthesis NN model with Alloy
• Generate test cases for testing NN models

Research Topics
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