CDCL SAT Solving

Wenxi Wang
University of Virginia
wenxiw@virginia.edu

A
A
Bl

[UNIVERSITY
JVIRGINIA

Direction 1: Software Verification

Systematically and logically analyze software systems with properties

o1, Software =

Analysis
TS

161¢

Direction 1: Software Verification

Typically models software problems into logical formulas

o1, Software =¥ Propert

Modeling & Translate

Analysis
Results

g

Logical Formula

Logical Reasoning

E.g., SAT and SMT Solving
Logical Results

2

Formal Reasoning for Software Systems

For example: Flight software verification in NASA
Correct/ Analysis .1, Software) Correctness

Model & Translate

Logical Formula SAT Formula

Logical Reasoning SAT Solving
SAT/UNSAT

Logical Results

Direction 1: Software Verification

Typically models software problems into logical formulas

Analysis ol Software
Results ¢l System

Logical Formula

Logical Reasoning

Logical Results

Direction 1: Software Verification

Simplified view: we focus on both analysis layers

Software Application

Problem Modeling

Logical Formula

Logical Reasoning

Logical Results

Direction 1: Software Verification

Symbolic Execution

Program

Problem Modeling

Symbolic

] Logical Formula
Execution

Logical Reasoning

Test Inputs

Logical Reasoning

SAT Formula SAT Formula

SAT Solving MaxSAT Solving
Logical Formula Maximum
Satisfiability

Logical Reasoning

SAT Formula .
Logical Result SMT Formula

Model Counting SMT Solving

Solution Count Satisfiability

Logical Reasoning

In this lecture, we focus on a specific logical reasoning- SAT solving
SAT Formula SAT Formula

SAT Solving MaxSAT Solving

Satisfiability Logical Formula Maximum
Satisfiability

Logical Reasoning

SAT Formula .
Logical Result SMT Formula

Model Counting SMT Solving

Solution Count Satisfiability

SAT Solving

One of the most fundamental problems in computer science

The first problem proven to be NP-complete

N

Many problems in CS can be reduced to SAT

Including software and security problems

SAT Applications

Many software and security problems can be reduced to SAT

Why Improving SAT Solving is important

Software Application Z;?;x

Modeling

Any small improvement can make an essential
Logical Formula contribution to many applications!

SAT Solving %

Logical Result

11

Input SAT formula: Boolean formula

CNF formula:

= (=, Vav,) A(v, Vv, AV
1 2 2 3 2
| Y] | Y | | J

Cq C, C3

Clauses: ¢4, C, , C,
thera|SZ—|U1) VZ) —|U2) U3

Boolean variables: v, , v, , V5

12

SAT Solving

v,, U,, U3 are Boolean

v, =false v, =true v; =true

SAT Formula

SAT Solving

Satisfiability

SAT UNSAT

13

SAT Solving

Does there exist an assignment satisfying all clauses?

(X5V x8Vx2) A(x2Vx1Vx3) A(x8VXx3Vx7) A(X5Vx3Vx8)A
(X6 VX1V —=x5) A(x8VX9VxXx3) A(x2V —x1Vx3) A(x1V —x8V x4)A
(X9VXx6VxXx8) A(X8VXx3VX9) A(x9Vx3Vx8) A(x6VxXx9VX5)A
(x2VXx3Vx8) A(X8BVx6VxXx3) A(X8V x3VxXx1)A(X8V X6V x2)A
(X7VXOV —x2) A(x8BVX9VxXx2) A(xIVx9Vvx4) A(x8V -x1Vx2)A
(Xx3V x4V x6) A(xXIVX7VX5) A(X7VXx1Vx6) A(x5Vx4Vx6)A
(x4V X9V xXx8) A(X2V-ax9VXxL)A(X5V ax7Vx1l) A(X7V X9V x6)A
(x2VXx5Vvx4) A(x8Vx4VxXx5) A(X5Vx9Vx3) A(X5VxX7Vx9)A
(X2V A x8VX1I)A(X7V x1VX5)A(x1VXx4VxXx3) A(x1Vx9Vx4)A
(Xx3VX5Vx6) A(X6VX3VX9) A(X7V-ax5VX9) A(X7V x5V x2)A
(X4V =X7VX3) A(x4V X9V X7)A(X5VXx1VXx7) A(X5Vx1VX7)A
(X6 VX7VxXx3) A(X8BVX6VX7) A(X6VXx2Vx3) A(x8V x2V x5)

14

CDCL SAT solving

SAT Formula

CDCL SAT Solving

Satisfiability

v, =false v, =true v; =true

SAT UNSAT

Currently, the most
successfully SAT solving

15

CDCL SAT solving

SAT Competition Winners on the SC2020 Benchmark Suite

| | [[|

250 |- —oo0o——

Y - —&— kissat-2020
' ‘@@ﬁ ' : —&— maple-lem-dise-ch-d1-v3-2019

—&— maple-comsps-drup-2016

—— lingeling-2014

——i—— abedsat-2015
lingeling-2013

—+—— glucose-2012
glucose-2011
cryptominisat-2010

—— precosat-2009

—&— minisat-2008

¥ e 2 Mg —"VA‘- 3 ? ; -_ '!: ;
]_OO A" 7 e G — & —=t A berkmin-2003

M = ——é—— maple-lem-dist-cb-2018
200 = i @O 1 — | —e— maple-lem-dist-2017

150

—&—— minisat-20006
—+——rsat-2007
—6—satelite-gti-2005
—@— zchaft-2004
—@— limmat-2002

solved Immstances

= | | | | |
0 1,000 2,000 3,000 4.000 5,000

C PU time data produced by Armin Biere and Marijn Heule 16

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X] \/X4) /\

(Xg\/iz} \/E5) o @
lc (x|

fextra

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 17

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X] \/X4) A\ @
%Xg\/YLlVYS;/\ X5:1
X3 VX2 Vxg) A

JT"extra 0

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 18

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X]\/X4)/\ Q
(x3 VX3 VXs5) N\ x5 = 1

(ig\/iz\/far)/\ 0
XZZ]

(2)

f extra
©

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 19

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X1 V x4) A @

(Xg\/¥4\/i5)/\ X5:1

3 Vxo VX N

;cg X2V %) O
extra Xz_]

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 20

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X] \/X4) /\ @
(X3 VX4 VX5) N\ x5 =1
(X3 VX VX)) A

Fextra

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 21

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X1 V x4) A @
(x3 VX4 VX5) N\ X5 =1
(X3 VXV X4) /\ <1>
f

extra X7 —1

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 22

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(%1 V x4) A
(x3 VX4 VX5) A\ x5 =1
(% VX VX)) A
fextra

XzZ]

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

X]:O
X4:1
X3:1
X3:O

©
®

23

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X] \/X4) /\
(Xg\/¥4 \/f5) 75
(X3 VX VX)) A
‘Fextra

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 24

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X2 VX4 V Xs5)

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 25

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

CDCL: Conflict Driven Clause Learning

(X1 V x4) A\ 0
(x3 VX4 V X5) O
(X3 VX2 VXa)
-Fextra

A X5:1
N\

®

XzI]

X]:O
X4:1
XgI]
X3:O

(X2 VX4V Xs5)

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 26

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

General Algorithm

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”
otherwise

. function CDCL
while (TRUE) do
while (BCP() = “conflict”) do
backtrack-level := ANALYZE-CONFLICT();
if backtrack-level < 0 then return “Unsatisfiable”;
BackTrack(backtrack-level);
if -DECIDE() then return “Satisfiable”;

NS oUE W

27

CDCL SAT solving

General Workflow

’,{ DECIDE

= SAT

____J

0%

Y Y

all assigned

%BACKTRACK}*‘

—[BCP

bl > 0

)

%

w conflict ANALYZE-
{CONFLICT | bl < OUNSAT

28

CDCL SAT solving

General Workflow

ﬁ[DECIDE

= SAT

____J

0%

Y Y

all assigned

%BACKTRACK}*‘

—[BCP

bl > 0

)

ﬁ

W conflict ANALYZE-
{CONFLICT | bl < OUNSAT

29

BCP: Boolean Constraint Propagation

Unit Propagation

Unit Clause: x1V x2V x3V x4V ...V Xn

!

Clause: x1V —x2Vx3Vx4V ...V Xn

30

CDCL SAT solving

General Workflow

a»[DECIDE

= SAT

____J

0%

Y Y

all assigned

%BACKTRACK}“

—[BCP

bl > 0

)

ﬁ

W conflict ANALYZE-
{CONFLICT | bl < OUNSAT

31

Conflict Analysis-learning a conflict clause

X8=1

Implication
Graph

| I

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 32

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

Conflict Analysis-learning a conflict clause

UIP: any node
other than the
conflict node that
is on all paths
from the decision
node to the

conflict node

G Second unique First unique
x13=0 implication point implication point @

Dominate the
X19=1 conflict nodes

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 33

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

Conflict Analysis-learning a conflict clause

Xn

X7:

X12= 0

. ©

Approach 1: (=x1Vv =x3 Vv x5V x17 Vv =x19) o1
tri-asserting clause

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 34

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

Conflict Analysis-learning a conflict clause

X17=O

—

o= Rog=1

7

X13:1

78 7 |
X10:O

"’ 7

7‘ X75=0

G X5 =9

= ©

Approach 2: (x10 V =x8 V x17 V —x19) o1
first UIP

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 35

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

Conflict Analysis-learning a conflict clause

X13:O
Approach 3: (x2 Vx4V -ax8Vx17V —|X19)

Second UIP

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 36

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

Conflict Analysis-learning a conflict clause

15

Xq4=

. Low
computational
cost (nearest to
the conflict node)

. Backtrack to the
lowest decision
level

X13:O
(x10 V =x8 V x17 V —x19)

first UIP

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf). 37

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

General Workflow

a»[DECIDE

0%

Y ¥

—[BCP

ﬁ

e
J all assigned = SAT
—(BACKTRACKJH
bl > 0
W conflict ANALYZE- UNSAT
J CONFLICT | 17 < 0

38

Backtrack using the learned conflict clause

Conflict clause: first UIPVI1IVI2V .. VIn

1
Maximum decision level

!

Backtrack level

(x10 V =x8 V x17 V —=x19)

39

CDCL SAT solving

General Workflow

a»[DECIDE

0%

Y ¥

—[BCP

ﬁ

e
J all assigned = SAT
%BACKTRACK}“
bl > 0
W conflict ANALYZE- UNSAT
J CONFLICT | 17 < 0

40

Decision Heuristics

1. Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

2. Value selection heuristics
aim: guide search towards a solution or conflict
plus: could compensate a bad variable selection, cache
solutions of subproblems [PipatsrisawatDarwiche’07]

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

41

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf

CDCL SAT solving

Implementation?

Y

DECIDE

o

Y

BCP

all assigned = SAT
bl > 0
conflict ANALYZE- UNSAT

CONFLICT | ¢ <0

42

Implementation: Two watched literal Scheme

Introduced by the SAT solver Chaff [1

e Remember: Unit propagation fires when all but one literal is
assigned false

e |dea: If two variables are either unassigned or assigned true,
no need to do anything.

e So just find two variables which satisfy this condition.

e |f can’t find two, do the unit propagate or a conflict is found

[1] Chaff: Engineering an Efficient SAT Solver by Moskewicz, Madigan, Zhao, Zhang, Malik, DAC 2001. 43

Implementation: Two watched literal Scheme

Introduced by the SAT solver Chaff [1

e Remember: Unit propagation fires when all but one literal is
assigned false

e |dea: If two variables are either unassigned or assigned true,
no need to do anything.

e So just find two variables which satisfy this condition.

e |f can’t find two, do the unit propagate or a conflict is found

[1] Chaff: Engineering an Efficient SAT Solver by Moskewicz, Madigan, Zhao, Zhang, Malik, DAC 2001. 44

Implementation: Two watched literal Scheme

Propagation Example

O/l

O/1

O/1

O/1

a
Triggers: T

® avbvcvd

t

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

45

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

O/l

o/l

o/l

a b
Triggers: T T

® g assigned false.

® Update pointer.

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

46

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation

: Two watched literal Scheme

Propagation Example

O/l

O/1

O/l

Triggers:

t

® g assigned false.

e Update pointer.

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

47

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

O/l

O/l

O/1

O/1

Triggers:

-

® Backtrack. a unassigned.

® Pointers do not move back

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

48

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

O/l

O/1

O/1

Triggers:

b C
® [f b is assigned true,
pointer doesn’t move.

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

49

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

0 O/1

O/1

b c
Triggers: T T

® |[f other variables assigned, nothing happens!

® Can’t emphasise enough

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

50

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

0 O/1

o/l

b c
Triggers: 1 T

® The unwatched literals a/d cause no work
® Not even checking there is nothing to do

® because that would be O(I)

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

51

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

o/

Triggers:

to watch...

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

-

® [f we cannot find something new & unassigned

52

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

0

Triggers:

® j.e.do unit propagation since this clause is unit

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

-

® We can set the remaining literal

53

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

0 0

b C
Triggers: T T

® | eave triggers where they are!

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

54

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Propagation Example

0 O/1

O/1

b c
Triggers: T T

® Triggers in the right place to continue after

backtracking.

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

55

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Advantages:

e ZERO cost if a literal not watched.

e ZERO cost on backtrack.

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf 56

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Two watched literal Scheme

Discussions:

e Really come into their own on large clauses
e probably not worthwhile on 3-SAT, for example
e E.g. if there are 100 variables in clause
e it still only needs to watch 2
e and 98% of the time the solver will do no work
e As if the problem was 98% smaller!
e We can handle problems with many large clauses
e benefits the conflict-driven learning
e since the learned conflict clauses are often big

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf 57

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf

Implementation: Classic CDCL Solver MiniSat

Overall Architecture

BWatch
b
—Ié1 —{cal
by [Co+—[cC3]
%
Sy S yry original
b & learnt
—by| 1165] clauses
b.5

Learnt conflict clause
(b3 V —bg V —bg)

conflict top leve
analysis conflict

UNSAT

SAT
) look up
all assigned . Taae)
decide ,
propagation
enqueue £ ¢
(bZ) Q’Qg’
M S/ /o
BPQueue & S antecedent
clause
¢
be Redsons
—bs 21 nu%i
2 [nul]
b b3 [null
b7 b4 C3 .
by bs[€4 |_explanation
be| Ce | (c1,C4,C6)
by b7 C2
bs|null
bg[C5

This figure is adapted a figure from [Wang 2016 Dissertation]

58

Research in Machine Learning for SAT

One direction: Improving Decision Heuristics
1. Variable selection heuristics

aim: minimize the search space

2. Value selection heuristics
aim: guide search towards a solution or conflict

59

	Slide 0: CDCL SAT Solving
	Slide 1
	Slide 2
	Slide 3: Formal Reasoning for Software Systems
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

