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Why Graphs?
Graph is a general representation for specifying any 

entities and their relations/interactions.

Computer Network Social Network Molecules
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Graphs for Software Engineering
Software can be represented as graphs

Control Flow Graph Data Flow Graph Call Graph
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Graphs for Automated Reasoning

Logical formulas can be represented as graphs

Boolean formula: (v1 ∨ v2) ∧ (v2 ∨ v3) ∧ (v3 ∨ v4)
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Tasks on Graphs

Typical Prediction Tasks (e.g., classification/regression) on Graphs
Node Level Prediction
Edge Prediction
Subgraph Level Prediction
Graph Level Prediction
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Motivations
Can classic deep learning techniques (e.g., CNN, RNN, LSTM) 

accomplish those tasks?

Mostly designed for handling the two kinds of graphs: 
grids and sequences

Graph representation for an images Graph representation for text
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Motivations
How to handle other types of graphs?

Computer Network Social Network Molecules

Control Flow Graph Data Flow Graph Call Graph
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Solution: Graph Neural Networks

Proposed in 2005[1], became popular in 2017[2] 

[1] Gori et al. A new model for learning in graph domains, 2005

[2] Gilmer et al. Neural message passing for quantum chemistry, ICML, 2017

Because of a powerful mechanism
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GNN
Key idea: Node Embedding

Encode nodes into embeddings such that 
similar nodes in the graph are embedded close together.

Graph Embedding Space

How to realize the encoder ENC?
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GNN
Powerful mechanism: Message Passing

For each node, update its embedding based on its neighbor’s embeddings 

messages

aggregate

aggregation result as new 
representation

message gen.

message gen.

message gen.

message

message

Is it enough to do message passing once? 
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GNN
Key idea: Message Passing

For each node, update its embedding based on its neighbor’s embeddings 

messages

aggregate

aggregation result as new 
representation

message gen.

message gen.

message gen.

message

message

Not enough!

node A and node E do not directly/indirectly “know” 
each other after one message passing!
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GNN
Key idea: Message Passing

For each node, update its embedding based on its neighbor’s embeddings 

messages

aggregate

aggregation result as new 
representation

message gen.

message gen.

message gen.

message

message

Message passing needs to be done in 
multiple times to improve the expressiveness
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GNN

So far, in summary ……
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GNN

GNN

A type of neural networks
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GNN

A B

B

A

CD

Initial node feature vectors

Operates on graph structured data

GNN
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A B

B

A

CD

Message passing 

GNN
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A B

B

A

CD

Round 1

Message passing 
– aggregating and transforming node and edge information

GNN
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Message passing 
– aggregating and transforming node and edge information

A B

B

A

CD

Round 1

GNN
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A B

B

A

CD

Message passing 
– aggregating and transforming node and edge information

Round 2

GNN
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A B

B

A

CD

Round 2

Message passing 
– aggregating and transforming node and edge information

GNN
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A B

B

A

CD

Message passing 
– aggregating and transforming node and edge information

Round 3, 4, 5, … 

GNN
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A B

B

A

CD

Message passing 
– aggregating and transforming node and edge information

Round n

GNN
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A B

B

A

CD

A B

B

A

CD

Initial node feature vectors Updated node embeddings

Capture graph structures 
- reason about complex relationships/dependencies

GNN

GNN
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More message passing always result in better expressiveness?

GNN

Too many message passing may cause 
over-smoothing issue[1]!

make embeddings indistinguishable

[1] Formal Definition and Metrics of Over-Smoothing

https://arxiv.org/pdf/2303.10993
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Ways to mitigate over-smoothing issue

GNN

• Restrict the number of message passing 

operations/layers (e.g., to the diameter of the graph).

• Normalization and regularization

• Residual/skip connections
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GNN for SE
Many SE problems can be naturally converted into graphs 

without information loss

Software

No information loss!
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GNN for SE

SE

Graph

GNN

Software

GNN captures complex dependency information of SE problems
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GNN for SE

GNN captures complex dependency information of SE problems

Graph

GNN

Feature vector

MLComplex dependency 
Information loss!

No information loss!

Software
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Broader View

I have a dream

I have

a dream

Transformer can be regarded as a kind of GNN 
on a fully connected word graph*

* please refer to Page 71, https://web.stanford.edu/class/cs224w/slides/03-GNN1.pdf

https://web.stanford.edu/class/cs224w/slides/03-GNN1.pdf
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Machine Learning Basics - Supervised Learning

Labeled Training 
Data
X, y

Learning 
Algorithm

ML Model f

Testing Data
X’

Predictions
f(X’)
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Machine Learning Basics - Unsupervised Learning

Unlabeled 
Training Data

X

Learning 
Algorithm

ML Model f

Testing Data
X’

Predictions
f(X’)
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Machine Learning Basics - Reinforcement Learning

Reinforcement Learning differs from supervised/unsupervised learning in the following perspectives:

● The ML model (i.e, RL policy) is used for decision making (i.e., select an action based on the 
current state)

● The current state is not collected from training or testing datasets, but from the environment.
● There is no ground truth action (i.e., label) for each input state, but a reward which quantitatively 

assesses the decisions made by the RL policy is applied.
● The goal of the learning algorithm is to maximize cumulative rewards.

Initial State x
OR

Updated State x
w/ Reward r

Learning 
Algorithm

ML Model f
(RL policy)

Environment

Predicted Action
f(x)

RL Agent
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Why Reinforcement Learning?
Supervised/unsupervised learning may not be suitable for sequential decision making problems.

The decision making problem in the Go game: given the 
current state of the board, decide where to put the next 

stone (e.g., the 78th stone) 33



Why Reinforcement Learning?
Supervised/unsupervised learning may not be suitable for sequential decision making problems.

The decision making problem in the Go game: given the 
current state of the board, decide where to put the next 

stone (e.g., the 78th stone) 34

Unsupervised learning? It is not a 
typical unsupervised learning 
problem like clustering.



Why Reinforcement Learning?
Supervised/unsupervised learning may not be suitable for sequential decision making problems.

The decision making problem in the Go game: given the 
current state of the board, decide where to put the next 

stone (e.g., the 78th stone) 35

Unsupervised learning? It is not a 
typical unsupervised learning 
problem like clustering.

Supervised learning? How to 
obtain the ground truth? Existing 
human Go player records may not 
always be optimal!



Why Reinforcement Learning?
Supervised/unsupervised learning may not be suitable for sequential decision making problems.

The decision making problem in the Go game: given the 
current state of the board, decide where to put the next 

stone (e.g., the 78th stone) 36

Reinforcement Learning
● State: all previous stone moves 

on the board
● Action: a stone move
● Reward

○ +1 for winning the game
○ -1 for losing the game
○ 0 for not winning or losing



Core Ideas
○ Value Network: a neural network for predicting a score of winning the game 

based on the current state. It is optimized using the reward.
○ Policy Network: a neural network for selecting one stone move based on the 

current state. It is optimized towards a vector of search probabilities estimated 
via Monte Carlo Search Tree.

○ Policy network and value network can be combined into one network.

Initial State x
OR

Updated State x
w/ Reward r

ML Model f
(policy & value)

Environment

Predicted Action
f(x)

RL Agent

update

37

Deep Reinforcement Learning Technique in AlphaGo Zero



Core Ideas

Deep Reinforcement Learning Technique in AlphaGo Zero



Fun Fact

* please refer to the official video: https://www.youtube.com/watch?v=tEzs3VHyBDM 39

OpenAI o1 applies RL and is claimed to be inspired by AlphaGo *

https://www.youtube.com/watch?v=tEzs3VHyBDM


More Learning Materials for Reinforcement Learning

● AlphaGo Zero Paper
● Reinforcement Learning Book by Richard Sutton

40

https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
http://incompleteideas.net/book/the-book-2nd.html
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