Graph Neural Networks

Wenxi Wang University of Virginia wenxiw@virginia.edu

Why Graphs?

Graph is a general representation for specifying any entities and their relations/interactions.

Graphs for Software Engineering

Software can be represented as graphs sys_write() fget_light() fput_light() vfs_write() in inputs х II_file_write() У IL_file_aio_write() init_sync_kiocb() if * generic_file_aio_write() z generic_file_aio_write_nolock() return if generic_file_direct_write() operators generic_file_buffered_write() return _grab_cache_page() Il prepare_write() return out filemap_copy_from_user() out II_commit_write() **Control Flow Graph** Data Flow Graph Call Graph

2

Graphs for Automated Reasoning

Logical formulas can be represented as graphs

Boolean formula: (v1 V v2) Λ (v2 V v3) Λ (v3 V v4)

Tasks on Graphs

Typical Prediction Tasks (e.g., classification/regression) on Graphs

- Node Level Prediction
- **Edge Prediction**
- Subgraph Level Prediction
- Graph Level Prediction

Motivations

Can classic deep learning techniques (e.g., CNN, RNN, LSTM) accomplish those tasks?

Mostly designed for handling the two kinds of graphs: grids and sequences

Graph representation for text

Motivations

How to handle other types of graphs?

Computer Network

Social Network

Control Flow Graph

Data Flow Graph

Molecules

Solution: Graph Neural Networks

Proposed in 2005^[1], became popular in 2017^[2] Because of a powerful mechanism

[1] Gori et al. A new model for learning in graph domains, 2005[2] Gilmer et al. Neural message passing for quantum chemistry, ICML, 2017

Key idea: Node Embedding

Encode nodes into embeddings such that similar nodes in the graph are embedded close together.

How to realize the encoder ENC?

Powerful mechanism: Message Passing

For each node, update its embedding based on its neighbor's embeddings

Key idea: Message Passing

For each node, update its embedding based on its neighbor's embeddings

Key idea: Message Passing

For each node, update its embedding based on its neighbor's embeddings

So far, in summary

A type of neural networks

Operates on graph structured data

Initial node feature vectors

Message passing

Message passing

- aggregating and transforming node and edge information

Message passing

- aggregating and transforming node and edge information

Message passing

- aggregating and transforming node and edge information

Message passing

- aggregating and transforming node and edge information

Message passing

- aggregating and transforming node and edge information

Round 3, 4, 5, ...

Message passing

- aggregating and transforming node and edge information

Round n

Capture graph structures - reason about complex relationships/dependencies

Initial node feature vectors

Updated node embeddings

More message passing always result in better expressiveness?

[1] Formal Definition and Metrics of Over-Smoothing

Ways to mitigate over-smoothing issue

- Restrict the number of message passing operations/layers (e.g., to the diameter of the graph).
- Normalization and regularization
- Residual/skip connections

GNN for SE

Many SE problems can be naturally converted into graphs

without information loss

GNN for SE

GNN captures complex dependency information of SE problems

GNN for SE

GNN captures complex dependency information of SE problems

Broader View

Transformer can be regarded as a kind of GNN on a fully connected word graph*

I have a dream

* please refer to Page 71, <u>https://web.stanford.edu/class/cs224w/slides/03-GNN1.pdf</u>

Reinforcement Learning

Wenxi Wang University of Virginia

wenxiw@virginia.edu

Machine Learning Basics - Supervised Learning

Machine Learning Basics - Unsupervised Learning

Machine Learning Basics - Reinforcement Learning

Reinforcement Learning differs from supervised/unsupervised learning in the following perspectives:

- The ML model (i.e, RL policy) is used for **decision making** (i.e., select an action based on the current state)
- The current state is not collected from training or testing datasets, but from the **environment**.
- There is no ground truth action (i.e., label) for each input state, but a **reward** which quantitatively assesses the decisions made by the RL policy is applied.
- The goal of the learning algorithm is to **maximize cumulative rewards**.

Supervised/unsupervised learning may not be suitable for **sequential decision making** problems.

Supervised/unsupervised learning may not be suitable for sequential decision making problems.

Unsupervised learning? It is not a typical unsupervised learning problem like clustering.

Supervised/unsupervised learning may not be suitable for sequential decision making problems.

Unsupervised learning? It is not a typical unsupervised learning problem like clustering.

Supervised learning? How to obtain the ground truth? Existing human Go player records may not always be optimal!

Supervised/unsupervised learning may not be suitable for sequential decision making problems.

Reinforcement Learning

- State: all previous stone moves on the board
- Action: a stone move
- Reward
 - +1 for winning the game
 - -1 for losing the game
 - 0 for not winning or losing

Deep Reinforcement Learning Technique in AlphaGo Zero

Core Ideas

- Value Network: a neural network for predicting a score of winning the game based on the current state. It is optimized using the reward.
- Policy Network: a neural network for selecting one stone move based on the current state. It is optimized towards a vector of search probabilities estimated via Monte Carlo Search Tree.
- Policy network and value network can be combined into one network.

Deep Reinforcement Learning Technique in AlphaGo Zero

Fun Fact

OpenAI o1 applies RL and is claimed to be inspired by AlphaGo *

More Learning Materials for Reinforcement Learning

- AlphaGo Zero Paper
- <u>Reinforcement Learning Book by Richard Sutton</u>