
Building Code Intelligence with Language Models

Talk @ UVA

Yuxiang Wei, 3rd year PhD student at UIUC

@YuxiangWei9

Sep 30, 2024

🏠 https://yuxiang.cs.illinois.edu

https://yuxiang.cs.illinois.edu

How many of you use Copilot?

The ubiquitous code intelligence

"""An efficient quick sort program"""

def partition(arr, low, high):
 pivot = arr[high]
 i = low - 1

 for j in range(low, high):
 if arr[j] < pivot:
 i += 1
 arr[i], arr[j] = arr[j], arr[i]

 arr[i + 1], arr[high] = arr[high], arr[i + 1]
 return i + 1

Language models (LMs) aids code intelligence

"GitHub Copilot has been activated by more than one million developers and adopted by over
20,000 organizations. It has generated over three billion accepted lines of code, and is the world’s
most widely adopted AI developer tool."

https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-github-copilot/

4

LM 101

Self-Attention + MLP (Multi-Layer Perceptron)

Self-Attention + MLP (Multi-Layer Perceptron)

… … … ……

["""] [An] [efficient] [quicksort] … [def] [partition] … [j] [in] [range(] [low] [,]

[high]

5

LM 101

Self-Attention + MLP (Multi-Layer Perceptron)

Self-Attention + MLP (Multi-Layer Perceptron)

… … … ……

[101] [12] [22348] [15920] … [305] [22847] … [3] [45] [13548] [228] [93]

[6666]
vocab_size
dim vector

…

0.93

…

0.01

LM vocab maps
IDs to tokens

What makes LMs powerful and scale?

● Huge number of model parameters
● Large amounts of unsupervised data for pre-training

ChatGPT
175B

GPT4
1.8T

pa

ra
me

te
rs

trillions of text tokens

wikipedia GitHub
online
forum

https://hanlab.mit.edu/proje
cts/efficientnlp_old/

multimodality

text visual speech

years

Building Code Intelligence with Language Models

● How to use code LMs?
○ Repilot [FSE’23]
○ APR-LLM [ICSE’23]

● How to build code LMs through posttraining?
○ Magicoder [ICML’24]
○ SelfCodeAlign [NeurIPS’24]

● How to build code LMs through pretraining?
○ SnowCoder [arXiv]

How to use code LMs — Repilot

● In the old days, we only rely on semantics-based, IDE autocompletions.
● Can autocompletion <-> LM synergistically improve each other?

Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. Copiloting the Copilots: Fusing Large Language Models with Completion
Engines for Automated Program Repair. [ESEC/FSE’23]

Automated program repair (APR)

Patch generation with LMs

LM completion vs. autocompletion

How Repilot works

Evaluation

Evaluation: comparison with existing tools

Tool Methodology #Correct Fixes

Defects4J 1.2 Defects4J 2.0 Total

CoCoNuT NMT 30 - -

DLFix NMT 32 - -

PraPR Template 35 - -

TBar Template 41 7 48

CURE NMT 43 - -

RewardRepair NMT 45 24 69

Recoder NMT 51 10 61

AlphaRepair LLM 52 34 86

Repilot LLM 66 50 116

Unique fixes generated by Repilot

Completion engine filters out invalid tokens Interaction between LLM and completion engine

Each component contributes positively to Repilot

Ablation study

Repilot Variants
Generation

Time
%Compilable

Patches
%Plausible

Patches
#Plausible

Fixes
#Correct

Fixes

Base LLM
(CodeT5)

0.232s 43.2% 3.95% 56 37

+ Pruning 0.294s 60.7% 5.02% 62 41

+ Memorization 0.255s 58.7% 4.82% 60 40

+ Active
completion

0.248s 63.4% 5.21% 63 42

Generalizability

Repilot is generalizable across bug subjects and models

Variant Model Subject of Bugs Generation Time %Compilable Patches #Correct Fixes

Base LLM CodeT5-large Defects4J 1.2 0.232s 43.2% 37

Repilot CodeT5-large Defects4J 1.2 0.248s 63.4% 42

Base LLM CodeT5-large Defects4J 2.0 0.230s 46.7% 41

Repilot CodeT5-large Defects4J 2.0 0.247s 64.8% 45

Base LLM INCODER-6.7B Defects4J 1.2 1.70s 32.4% 48

Repilot INCODER-6.7B Defects4J 1.2 1.70s 47.2% 54

Base LLM INCODER-6.7B Defects4J 2.0 1.67s 34.6% 45

Repilot INCODER-6.7B Defects4J 2.0 1.69s 48.0% 46

Repilot

● Copiloting the Copilots
○ Fuses Large Language Models with Completion Engines for more effective

Patch Generation in Automated Program Repair

○ Can be applied to general program synthesis

First comprehensive study on LMs for APR

● Extensive evaluations using 9 different LMs
● Use 5 different repair datasets across 3 different programming

languages (Java, Python, and C).
● Compare LMs against each other using the 3 repair settings.
● More in the paper!

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated Program Repair in the Era of Large Pre-Trained Language Models.
[ICSE’23]

How to build code LMs through posttraining

● Magicoder [ICML’24]
○ OSS-Instruct: instruction tuning from open source

● SelfCodeAlign [NeurIPS’24]
○ Self-improvement for code generation

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering Code Generation with OSS-Instruct.
[ICML’24]

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm de Vries, Leandro Von Werra,
Arjun Guha, and Lingming Zhang, Fully Transparent Self-Alignment for Code Generation, [NeurIPS’24]

Large language models for code

● Open source code LLMs are catching up with the best closed source
ones (e.g., ChatGPT and GPT-4)!!

● Instruction tuning (alignment) plays a crucial role

21

Foundation code models

● StarCoder (15.5B)
○ Collect massive code from GitHub: The Stack

■ 6TB permissive code data

○ Filtering and cleaning: starcoderdata
■ 783GB of code in 86 programming languages

○ StarCoderBase (1T training tokens); StarCoder (+35B Python tokens)

22

starcoderdata

Filter StarCoderBase
(15.5B)

1T tokens
StarCoder (15.5B)

35B Python tokens

Foundation code models

● CodeLlama (7B, 15B, 34B)
○ Continue pretraining Llama 2 on code and natural language + code data

○ CodeLlama (500B tokens); CodeLlama-Python (+100B Python tokens)

23

Llama 2
 (7B, 13B,

34B)

Code training
Infilling training

(500B)

Long context
finetuning

(20B)

Instruction
finetuning

(5B)

Python code training
(100B)

Long context
finetuning

(20B)

CodeLlama
Instruct

CodeLlama

CodeLlama
Python

Foundation code models

● Deepseek-Coder (1.3B, 6.7B, 33B)
○ Same training data as StarCoder, but concatenates dependent files to form a

single training example

○ Trained on 2T tokens

24

starcoderdata

Dependency
parsingRule filtering Repo-level

deduplication
Quality

screening

Training data

Code training
(4K window)
(1.8T tokens)

Long context pretraining
(16K window)
(200B tokens)

Instruction finetuning
(16K window)

(2B tokens)

● Collect real-world instructions
○ OctoCoder uses GitHub commits to instruction-tune StarCoder and achieves

46.2 HumanEval pass@1 (13pp higher than the base StarCoder)

Instruction tuning for code

25

Source: OctoPack: Instruction Tuning Code Large Language Models

Instruction tuning for code

● Self-generated instructions
○ CodeLlama-Instruct applies Llama-2 to generate coding problems and

CodeLlama to generate solutions.

○ Modest Impact: 4pp improvements over 7B and 2pp over 13B base models

(results for the 34B model not reported). 42.7 HumanEval pass@1 (13B)

26

Prompt: [INST] Write 50 programming interview questions of easy and medium complexity. Provide questions on a diverse range of subjects, and make sure
no two questions are alike. Make sure the problems can be solved with a single standalone Python function using standard libraries. [/INST]
1. Write a function that finds the maximum depth of list nesting in a given list.

2. Given an integer array nums, rotate the array to the right by k steps, where k is non-negative.
3. Write a function that gets the musical pitch that is closest to a given frequency in Hz. A pitch should consist of a letter, possibly a # sign, and an octave
number.
4. Write a function that removes any sequences of whitespace that are between numbers in an input string.
5. Write a function that counts the number of words in a string that have length n, where n is an input. The function should ignore characters that aren’t
letters, numbers, or spaces.
6. Write a function that returns the longest palindromic substring in a given string.
7. Create a function that will find the length of the longest substring without repeating characters in a given string. 8. Write a function that reverses the diagits
in a number.
9. Write a function that finds the valleys in a list of integers.
10. Write a python function that reverses every group of k words in a sentence.

Instruction tuning for code

● Distill knowledge from teacher models (e.g., ChatGPT)
○ Self-Instruct: use ChatGPT to generate synthetic code instructions

■ Representative dataset: Code Alpaca

○ WizardCoder (Evol-Instruct): 73.2 HumanEval pass@1 (34B)
■ 20pp improvement over base model

○ Magicoder (OSS-Instruct + Evol-Instruct): 76.7 HumanEval pass@1 (6.7B)
■ 30pp improvement over base model

● More discussions in the next few slides

27

HumanEval+ performance of different LLMs for code

Summary of EvalPlus Leaderboard

28

● Self-Instruct (Code Alpaca)
○ Relies on 21 seed tasks as few-shot examples to generate new code

instructions using an identical prompt template.

Prompt Template for Self-Instruct

You are asked to come up with a set of 20 diverse code generation task instructions. These task instructions will be
given to a GPT model and we will evaluate the GPT model for completing the instructions.

Here are the requirements:
1. Try not to repeat the verb for each instruction to maximize diversity.
…

List of 20 tasks:
{seeds}

Distill synthetic code instructions

29

● Code Evol-Instruct (WizardCoder)
○ Takes Code Alpaca as seeds and use 5 heuristics to increase the complexity of

the data

Prompt Template for Code Evol-Instruct

Please increase the difficulty of the given programming test question a bit.

You can increase the difficulty using, but not limited to, the following methods:
{heuristic}

{question}

Distill synthetic code instructions

30

● Limitations of Self-Instruct & Code Evol-Instruct
○ Depends on a fixed set of seed tasks and heuristics

○ Generated data can inherit the LLM’s system bias

Prompt Template for Code Evol-Instruct

Please increase the difficulty of the given
programming test question a bit.

You can increase the difficulty using, but not
limited to, the following methods:
{heuristic}

{question}

Distill synthetic code instructions

31

Prompt Template for Self-Instruct
You are asked to come up with a set of 20 diverse code
generation task instructions. These task instructions
will be given to a GPT model and we will evaluate the
GPT model for completing the instructions.
Here are the requirements:
…
List of 20 tasks:
{seeds}

● LLMs get inspired from open source
○ Create high-quality and low-bias coding problems

○ Orthogonal to existing methods

🪄OSS-Instruct

32

Prompt (details omitted)

Please gain inspiration from the code
snippet to create a high-quality
programming problem…

Seed code snippet

 learn_model(
 tf_idfSVM, tf_idfNB, target)

def get_clean_review(raw_review):
 letters_only = re.sub(
 "[^a-zA-Z]", " ", raw_review)

Open-source codebase

PosNeg.py Program.cs

Log.cpp Strength.swift

GrantInfo.ts …

Large
Language
Model

Generated solution (details omitted)

from sklearn.feature_extraction.text import TfidfVectorizer ...
def get_clean_review(raw_review): ...
def train_model(tf_idfSVM, tf_idfNB, reviews, labels): ...
def classify_review(clean_review, tf_idfSVM, tf_idfNB): ...
...
train_model(tf_idfSVM, tf_idfNB, reviews, labels)
cleaned_review = get_clean_review(...)...

Generated problem (details omitted)

You are working on a natural language processing (NLP) project and need to
create a program to preprocess and classify movie reviews...
...
Your program should be able to preprocess new movie reviews, train the model,
and classify new reviews accurately.

OSS-Instruct

● Codebase: StarCoder training data (starcoderdata)
○ 783GB of code in 86 programming languages

○ Includes 54GB GitHub Issues + 13GB Jupyter notebooks

○ 32GB of GitHub commits

🪄OSS-Instruct: data collection

33

Seed code snippet

 learn_model(
 tf_idfSVM, tf_idfNB, target)

def get_clean_review(raw_review):
 letters_only = re.sub(
 "[^a-zA-Z]", " ", raw_review)

Open-source codebase

PosNeg.py Program.cs

Log.cpp Strength.swift

GrantInfo.ts …

● Seed snippet collection
○ Randomly extract 1–15 consecutive lines from each document

○ 80K intotal (75K after cleaning): 40K from Python, and 5K from each of C++,

Java, TypeScript, Shell, C#, Rust, PHP, and Swift respectively

🪄OSS-Instruct: data collection

34

Seed code snippet

 learn_model(
 tf_idfSVM, tf_idfNB, target)

def get_clean_review(raw_review):
 letters_only = re.sub(
 "[^a-zA-Z]", " ", raw_review)

Open-source codebase

PosNeg.py Program.cs

Log.cpp Strength.swift

GrantInfo.ts …

🪄OSS-Instruct: prompt design

35

● Ask ChatGPT (gpt-3.5-turbo) to get inspired from the code

You are exceptionally skilled at crafting high-quality programming problems and offering precise solutions.

Please gain inspiration from the following random code snippet to create a high-quality programming problem.
Present your output in two distinct sections: [Problem Description] and [Solution] .

Code snippet for inspiration:
ΗΗΗ
{code}
ΗΗΗ

Guidelines for each section:
1. [Problem Description] : This should be **completely self-contained**, providing all the contextual

information one needs to understand and solve the problem. Assume common programming knowledge, but
ensure that any specific context, variables, or code snippets pertinent to this problem are explicitly
included.

2. [Solution] : Offer a comprehensive, **correct** solution that accurately addresses the [Problem
Description] you provided.

36

Seed: shell script
python3 makeErrorFile.py data/test_dataset_14 14

Problem
Create a Python program that generates an error file based
on a given dataset...

Code
def generate_error_file(dataset_file, ...):
 error_lines = []
 with open(dataset_file, 'r') as file:
 for line in file:
 ...
 with open(error_file_name, 'w') as error_file:
 for error_line in error_lines:
 error_file.write(error_line + '\n')
if __name__ == "__main__":
 if len(sys.argv) != 3:
 print("Usage: ...")
 else:
 dataset_file = sys.argv[1]
 dataset_number = sys.argv[2]
 generate_error_file(...)

Seed: method definition
render() {

Problem
Your task is to complete the `render` method to generate the
rendered shape as a string...

Code
class ShapeRenderer {
 constructor(vertices) {
 this.vertices = vertices;
 }
 render() {
 let renderedShape = "";
 for (let i = 0; i < this.vertices.length; i++) {
 const vertex = this.vertices[i];
 renderedShape += `(${vertex.x}, ${vertex.y})`;
 if (i < this.vertices.length - 1) {
 renderedShape += " - ";
 }
 }
 return renderedShape;
 }
}

Seed: class signature
@SpringBootApplication
@Import({ AxonConfig.class })
public class AxonbankApplication {
 public static void main(String[] args) {

Problem
Create a simple Java Spring Boot application for a banking
system...

Code
import org.axonframework.commandhandling.CommandBus;
import org.axonframework.config.Configuration;
...
@SpringBootApplication
@Import({ AxonConfig.class })
public class AxonbankApplication {...}
public class BankAccount {...}
public class CreateAccountCommand {...}
public class DepositFundsCommand {...}
public class WithdrawFundsCommand {...}
public class AccountCreatedEvent {...}
public class FundsDepositedEvent {...}
public class FundsWithdrawnEvent {...}

Seed: library imports
import numpy as np
import gym_electric_motor as gem
import matplotlib.pyplot as plt

Problem
Create a reinforcement learning agent to control an electric
motor using the OpenAI Gym environment...

Code
import numpy as np
import gym_electric_motor as gem
...
env = gem.make("DcSeriesCont-v1")
class DQNAgent:
 def __init__(self, state_dim, action_dim): ...
 def build_model(self): ...
 def act(self, state): ...
 def train(self, state, action, reward, ...): ...
...
for episode in range(episodes):
 state = env.reset()
 state = np.reshape(state, [1, state_dim])
 ...

37

38

Seed: comments
Set degrees

Problem
Implement a Python class that represents a temperature in
degrees...

Code
class TemperatureConverter:
 def __init__(self): ...
 def set_celsius(self, degrees): ...
 def set_fahrenheit(self, degrees): ...
 def set_kelvin(self, degrees): ...
 def get_celsius(self): ...
 def get_fahrenheit(self): ...
 def get_kelvin(self): ...
 def convert_to(self, unit):
 if unit == 'C':
 return self.get_celsius()
 elif unit == 'F':
 return self.get_fahrenheit()
 elif unit == 'K':
 return self.get_kelvin()
 ...

Seed: code statements
cutoff_range = np.ptp(cutoffs)
if cutoff_range == 0: cutoff_range = 1
cutoff_colors = plt.get_cmap('plasma')(
 (cutoffs - np.min(cutoffs)) / cutoff_range
)

Problem
Implement a function that calculates the color values for a
given set of cutoff values based on a specified color map...

Code
import numpy as np
import matplotlib.pyplot as plt
def calculate_cutoff_colors(cutoffs, cmap_name):
 cutoff_range = np.ptp(cutoffs)
 if cutoff_range == 0:
 cutoff_range = 1
 cmap = plt.get_cmap(cmap_name)
 normalized_cutoffs = ...
 cutoff_colors = ...
 return cutoff_colors

● Base models: CodeLlama-Python-7B and DeepSeek-Coder-6.7B-Base

● Base model + 75K OSS-Instruct 👉 Magicoder
○ Generated by gpt-3.5-turbo-1106

● Magicoder + 110K Evol-Instruct 👉 Magicoder-S
○ Decontaminated from evol-codealpaca-v1, an open-source reproduction of

Evol-Instruct

39

Training Magicoder and Magicoder-S

https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1

40

Overview of OSS-Instruct dataset

● Problem types: Categorized using the SOTA instruction-tuned
embedding model INSTRUCTOR with manually designed queries

● Length distribution of the generated problems and solutions

https://instructor-embedding.github.io

41

Similarity with HumanEval

● Measured using TF-IDF embedding
● Similarity to HumanEval: OSS-Instruct < Evol-Instruct < Self-Instruct

● Magicoder-S outperforms ChatGPT on HumanEval+

42

Pass@1 results on HumanEval+

Model (Size) HumanEval+

GPT-3.5-Turbo (?) 65.9

GPT-4-Turbo (?) 81.7

WizardCoder-SC (15B) 45.1

WizardCoder-CL (7B) 40.9

CodeLlama-Python (7B) 34.1

Magicoder-CL (7B) 55.5

Magicoder-S-CL (7B) 66.5

Model (Size) #Training tokens HumanEval+

DeepSeek-Coder
Base (6.7B)

2T 39.6

DeepSeek-Coder
Instruct (33B)

+2B 72.6

DeepSeek-Coder
Instruct (6.7B)

+2B 70.1

Magicoder-DS (6.7B) +90M 60.4

Magicoder-S-DS (6.7B) +240M 70.7

More evaluation 👉 EvalPlus Leaderboard (https://evalplus.github.io)

https://evalplus.github.io

● Magicoder-CL significantly outperforms the base model
● Magicoder-S-CL (7B) reaches WizardCoder-CL (34B)

43

Multilingual evaluation on MultiPL-E

Model (Size) Java JavaScript C++ PHP Swift Rust

CodeLlama-Python (34B) 40.2 41.7 41.4 40.4 35.3 38.7

WizardCoder-CL (34B) 44.9 55.3 47.2 47.2 44.3 46.2

WizardCoder-SC (15B) 35.8 41.9 39.0 39.3 33.7 27.1

CodeLlama-Python (7B) 29.1 35.7 30.2 29.0 27.1 27.0

Magicoder-CL (7B) 36.4 45.9 36.5 39.5 33.4 30.6

Magicoder-S-CL (7B) 42.9 57.5 44.4 47.6 44.1 40.3

44

Impact of the language distribution

● Training on different languages boosts overall performance
○ Python data can boost non-Python performance and vice versa

○ Combining data from both sources achieves the best result!

Model (7B) Finetuning Data Python (HumanEval+) Others (MultiPL-E)

CodeLlama-Python - 34.1 29.6

Magicoder-CL Python (43K) 47.6 32.7

Magicoder-CL Others (32K) 44.5 38.3

Magicoder-CL Both (75K) 55.5 37.8

45

OSS-Instruct vs. direct finetuning

● Directly finetuning on open-source code may harm performance
○ 75K comment-function pairs data following CodeSearchNet

○ Data factuality is essential to code instruction tuning!

Finetuning Data HumanEval+ MultiPL-E

Base model w/o finetuning 34.1 29.6

Comment-function pairs (75K) 47.6 24.1

OSS-Instruct (75K) 55.5 37.8

Base model:
CodeLlama-Python-7B

Summarizing 🎩Magicoder

● Empower Code Generation with 🪄OSS-Instruct
○ Inspire LLMs with open-source code snippets for data generation

○ Generate high-quality and low-bias data

⭐ 2,000 ⬇ 300K

SelfCodeAlign: powering StarCoder2-Instruct

Check out the blog post: https://huggingface.co/blog/sc2-instruct

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm de Vries, Leandro Von Werra,
Arjun Guha, and Lingming Zhang, Fully Transparent Self-Alignment for Code Generation, [NeurIPS’24]

https://huggingface.co/blog/sc2-instruct

How to build code LMs through pretraining

● SnowCoder [arXiv]
○ We all know that high-quality data is important, but what does it mean?

Yuxiang Wei, Hojae Han, and Rajhans Samdani. Arctic-SnowCoder: Demystifying High-Quality Data in Code Pretraining. [arXiv]

https://arxiv.org/abs/2409.02326

Prerequisites of (code) model pretraining

● Infra
○ Hardware

■ Many A/H100s + memory + CPUs and a stable GPU cluster
■ Large volumes of cloud storage (e.g., aws s3 buckets and database)

○ Software
■ Job scheduler (e.g., kubernetes and slurm)
■ Efficient pretraining library (e.g., Megatron-DeepSpeed and Megatron-LM)
■ Training environment/code with a multi-node setup (e.g., with NCCL)

● Architecture
○ Llama architecture w/ some hyperparameter changes
○ A trained tokenizer

● Raw data
○ The Stack + GitHub crawls

Three phases of progressively refined data

1. 500B compute using 400B preprocessed raw tokens
a. Throughput: 1.5 days with 16 nodes

Raw code corpus

Crawl and
preprocess

Phase 1: General pretraining
(500B compute)

400B tokens

The Stack v1
and GitHub

Three phases of progressively refined data

1. 500B compute using 400B preprocessed raw tokens

2. 50B compute using 12.5B high-quality tokens (repeat x4), scored with a

BERT-style annotator
a. Positive data: Magicoder + StarCoder2-Instruct + synthetic high-quality code files

b. Negative data: random sampled raw code

Raw code corpus High-quality code

Crawl and
preprocess

Phase 1: General pretraining
(500B compute)

400B tokens 12.5B tokens

Quality annotator
(BERT-style)

Positives: high-quality
files + instruction data
Negatives: randomly
sampled raw data

Phase 2: Continued pretraining
(50B compute)

The Stack v1
and GitHub

Three phases of progressively refined data

1. 500B compute using 400B preprocessed raw tokens

2. 50B compute using 12.5B high-quality tokens (repeat x4), scored with a

BERT-style annotator

3. 5B compute using 2B synthetic tokens generated w/ OSS-Instruct x Llama 3.1
a. Modified to generate high-quality code files using phase 2 data as seeds

Raw code corpus High-quality code Synthetic code

Crawl and
preprocess

Modified
OSS-Instruct

for pretraining

Llama 3.1 70B
Instruct

Phase 1: General pretraining
(500B compute)

400B tokens 12.5B tokens 2B tokens

Quality annotator
(BERT-style)

Positives: high-quality
files + instruction data
Negatives: randomly
sampled raw data

Phase 2: Continued pretraining
(50B compute)

Phase 3: Enhanced pretraining
(5B compute)

The Stack v1
and GitHub

● Each phase improves over the previous
● Decent performance across the 4 codegen benchmarks

Baseline comparison

High-quality = In-domain

● 4 BERT annotators trained with different data recipes
● X-axis: ROC-AUC score of each annotator on the corresponding benchmark

○ TL;DR, ROC-AUC evaluates how well a scorer can rank one distribution higher

than the other

● Y-axis: benchmark pass@1

Raw code corpus High-quality code

400B tokens 12.5B tokens

Quality annotator
(BERT-style)

Positives: high-quality
files + instruction data
Negatives: randomly
sampled raw data

Phase 2: Continued pretraining
(50B compute)

Conclusion: how to get a good code pretraining corpus

● A huge raw code corpus from the stack, expecting 10x the final code
tokens

● A small annotation model to obtain the 10%
○ The annotator should match the downstream distribution

● Synthetic data is all you need?
● More details in the paper: https://arxiv.org/abs/2409.02326

https://arxiv.org/abs/2409.02326

Yuxiang Wei, 3rd year PhD student at UIUC

@YuxiangWei9

🏠 https://yuxiang.cs.illinois.edu

● How to use code LMs?
○ Repilot [FSE’23]
○ APR-LLM [ICSE’23]

● How to build code LMs through posttraining?
○ Magicoder [ICML’24]
○ SelfCodeAlign [NeurIPS’24]

● How to build code LMs through pretraining?
○ SnowCoder [arXiv]

Building Code Intelligence with Language Models

https://yuxiang.cs.illinois.edu

