CS 6501 Machine Learning for Software Reliability
(Fall 2024)

Wenxi Wang
University of Virginia
wenxiw@virginia.edu

A
AME

[UNIVERSITY
JVIRGINIA



Logistics

* Instructor: Wenxi Wang (wenxiw@virginia.edu)

* TA: Mingtian Tan (wtd3gz@virginia.edu)

* Time: Mondays & Wednesdays 11:00am - 12:15pm
* Location: Rice Hall 011

* Office Hour: appointment on demand



Course Objective

Objective: for you to gain an understanding of how research is
conducted in the field of machine learning for software engineering

General steps of doing research in CS:

Step 1: learn the fundamental knowledge and classic techniques in the field;

Step 2: find a specific research topic and a specific research problem

Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;

Step 5: design the algorithms, do the implementation;

Step 6: do the experimental evaluation: design your experimental setup, take the state-
of-the-art techniques as the baselines, evaluate your technique with the baselines;

Step 7: Write up the paper
Step 8: Present the paper!



Course Structure

General steps of doing research in CS:

Step 1: learn the fundamental knowledge and classic techniques in the field;

Step 2: find a specific research topic and a specific research problem

Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;

Step 5: design the algorithms, do the implementation;

Step 6: do the experimental evaluation

Step 7: Write up the paper

Step 8: Present the paper!

Part 1: introducing basic Part 2: presenting papers in interdisciplinary research in various Project
concepts, fundamental topics, introducing the state-of-the-art techniques Presentation
In-class knowledge, classic techniques in  Also, Learn the SOTA techniques from others’ presentation by
timeline: FM, SE, and ML just attending the class!
Off-class
timeline: Part 1: Read the provided Part 2: Talk to me, Part 3: More literature Part 4: Initial evaluation
materials, talk to me, and do literature review review, talk to me, results and write the

find a specific research topic Write the proposal  propose new approach, do report
the initial implementation



Course Structure

General steps of doing research in CS:

Step 1: learn the fundamental knowledge and classic techniques in the field;

Step 2: find a specific research topic and a specific research problem

Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;

Step 5: design the algorithms, do the implementation;

Step 6: do the experimental evaluation

Step 7: Write up the paper

Step 8: Present the paper!

Part 1: introducing basic Part 2: presenting papers in interdisciplinary research in various Project
concepts, fundamental topics, introducing the state-of-the-art techniques Presentation
In-class knowledge, classic techniques in  Also, Learn the SOTA techniques from others’ presentation by
timeline: FM, SE, and ML just attending the class!
Off-class
timeline: Part 1: Read the provided Part 2: Talk to me, Part 3: More literature Part 4: Initial evaluation
materials, talk to me, and do literature review review, talk to me, results and write the

find a specific research topic Write the proposal  propose new approach, do report
the initial implementation



Course Structure

General steps of doing research in CS:

Step 1: learn the fundamental knowledge and classic techniques in the field;

Step 2: find a specific research topic and a specific research problem

Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;

Step 5: design the algorithms, do the implementation;

Step 6: do the experimental evaluation

Step 7: Write up the paper

Step 8: Present the paper!

Part 1: introducing basic Part 2: presenting papers in interdisciplinary research in various Project
concepts, fundamental topics, introducing the state-of-the-art techniques Presentation
In-class knowledge, classic techniquesin  Also, Learn the SOTA techniques from others’ presentation by
timeline: FM, SE, and ML just attending the class!
Off-class
timeline: Part 1: Read the provided Part 2: Talk to me, Part 3: More literature Part 4: Initial evaluation
materials, talk to me, and do literature review review, talk to me, results and write the

find a specific research topic Write the proposal  propose new approach, do report
the initial implementation



Course Structure

General steps of doing research in CS:

Step 1: learn the fundamental knowledge and classic techniques in the field;

Step 2: find a specific research topic and a specific research problem

Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;

Step 5: design the algorithms, do the implementation;

Step 6: do the experimental evaluation

Step 7: Write up the paper

Step 8: Present the paper!

Part 1: introducing basic Part 2: presenting papers in interdisciplinary research in various Project
concepts, fundamental topics, introducing the state-of-the-art techniques Presentation
In-class knowledge, classic techniques in  Also, Learn the SOTA techniques from others’ presentation by
timeline: FM, SE, and ML just attending the class!
Off-class
timeline: Part 1: Read the provided Part 2: Talk to me, Part 3: More literature Part 4: Initial evaluation
materials, talk to me, and do literature review review, talk to me, results and write the

find a specific research topic Write the proposal  propose new approach, do report
the initial implementation



Course Evaluation

Part 1: introducing basic Part 2: presenting papers in interdisciplinary research in the
concepts, fundamental field, introducing the state-of-the-art techniques
In-class knowledge, classic techniques in Also, Learn the SOTA techniques from others’ presentation by
timeline: FM, SE, and ML just attending the class!

Don’t stress!
You can share

Quiz (5%): to see if you’'ve Presentation (25%): teach Participation (20%): Learn the
your thoughts, done the reading others the SOTA techniques in SOTA techniques from other topics

ideas, after the the topic you are interested in il by actively attending the class!

reading!

Off-class
timeline:

Part 1: Read the provided Part 2: Do literature Part 3: More literature Part 4: Initial evaluation
materials, talk to me, and review. Write the review, propose new results and write the
find a specific research topic proposal (Step 3) approach, do the initial report (Step 6 and 7)
(step 1 and 2) implementation

(Step 3, 4, and 5)

Project proposal and Final Project report and

presentation (15%) presentation (35%)



Overview of Course Content






Bugs can cause horrible consequences...

\'!I. N Bc N EWS United Airlines issued nationwide ground stop due to 'systemwide technology issue'

Markets Tech Medi Calculat Vid - =lan - - -
e United Airlines issued nationwide ground

A hacker gained access to 100 million CapiteSariy: T3 ek s L nre Rt e i L A T )

he airline held all its aircraft in the U.S. and Canada at their departure gates Tuesday but lifte

1 FOX“ Personal Finance  Economy Markets  Watchlist Lifestyle  Real Estate  Tech Video

IIIIIIIII

Cruise robotaxi crashes into firetruck
Yet another FDA Class 1 recall for Minnesota-made infusi in San Francisco

1 il ise driverl icl [ '
Syrlnge pumps he Cruise driverless vehicle was transporting one person at the time of the crash

yahoo/news  Fearch the web

I




Software is everywhere
Bugs can cause horrible consequences...

11



For software reliability,
What can we do to help?

Part 1
Direction 1: Software Verification

Direction 2: Software Testing

12



For software reliability,
What can we do to help?

Part 1
Direction 1: Software Verification

Direction 2: Software Testing

13



Direction 1: Software Verification

Make software reliable
using formal reasoning

o

formal reasoning

14



Formal Reasoning

o

Involves various research domains

Madel Checking
Automated Reasoning

Theorem Proving
Verification
Static Analysis
And more ......

15



Direction 1: Software Verification

. Searches the entire state space for bugs




Direction 1: Software Verification

If no bug is found, the system is safe!




Direction 1: Software Verification

Provides correctness guarantees!

18



Direction 1: Software Verification

Systematically and logically analyze software systems with properties

o1, Software =

Analysis
TS

161¢

19



Direction 1: Software Verification

Typically models software problems into logical formulas

.1, Software
rdih~
ci~ System

Analysis
Results

g

Modeling & Translate

Logical Formula

Logical Reasoning

E.g., SAT and SMT Solving
Logical Results

20




Formal Reasoning for Software Systems

For example: Flight software verification in NASA
Correct/ Analysis .1, Software Flight — Correctness

Model & Translate

Logical Formula SAT Formula

Logical Reasoning SAT Solving
SAT/UNSAT

Logical Results

21



Direction 1: Software Verification

TyplcaIIy models software problems into logical formulas

[ Analysis ., Software
) %,
I e'e Results e System
[
[ Modeling & Translate
L

Logical Formula

Logical Reasoning

Logical Results

22



Direction 1: Software Verification

Simplified view: we focus on both analysis layers

Software Application

Problem Modeling

Logical Formula

Logical Reasoning

Logical Results

23



Software Verification is Applied in Industry

Amazon Web Services makes a SMT queries daily
to ensure its cloud service security

amazon | science

A billion SMT queries a day

aaaaaaaaaaaa

24



Software Verification has many applications

But software verification is generally hard

» .
|
/ // -
5 4 i
-
-
=

25



Direction 1: Software Verification

Improve the scalability and applicability of
software verification

26



Direction 1: Software Verification

Improve the scalability of software verification
by enhancing and bridging both analysis layers

Software Application

Problem Modeling

Logical Formula

Logical Reasoning

Logical Result

27



Direction 1: Software Verification

Improve the scalability of software verification
by enhancing and bridging both analysis layers
using machine learning approaches

Software Application

Problem Modeling

Logical Formula

Logical Reasoning

Logical Result

Approach

Machine

Learning

28



Fundamental Knowledge in Formal Methods and Software Engineering

9/4, Symbolic Execution Guest Lecture:
Wed Presenter: Yang Hu (Applied Scientist in AWS, PhD in UT Austin)

Direction

Readings:

1. Symbolic execution slides by Michael Hicks
2. KLEE, a famous symbolic execution tool
3. KLEE webpage (optional)

Operating
Systems

Quiz before the lecture

Software Appli SAT Solving I
Mon

Readings:

1. Classic Book: Decision Procedure by Daniel Kroening and

: : _
Sym bOIIC Execution Ofer Strichman (Read Chapter 1 and Chapter 2)

Alloy Toolset Problen 2. Classic SAT solver MiniSat
i Modelin 3. MiniSat page (optional)

Logical Forn SAT Solving II and
Wed SMT Solving
|

SAT Solving Logical

Quiz before the lecture

Propositional
First-order logic, ...

Readings:

1. State-of-the-art SAT solver Kissat
2. For SMT Solving, read Decision Procedure, Chapter 3

Quiz before the lecture

SMT Solving Reasonir
. Software Modeling Readings:
MaxSAT Solvi ng Mon and Verification :
. Logical R 1. A popular software modeling tool, Alloy
Model Counti ng Ogical Res 2. Classic Book Reading: Software Abstractions by Daniel

Jackson (optional)

Quiz before the lecture



Direction 1: Software Verification

Fundamental Knowledge in Machine Learning (especially for Software Engineering)

9/23, Neural Networks TBD
Mon

9/25, Deep Learning TBD

Wed Supervised/

Unsupervised/
Reinforcement
Learning

9/30, Large Language Model TBD

Symboli¢ vion
Alloy Tooiset, ... | 40 s

Propositional

First-order logic, ... Logical Formula Machine

Learning

Graph Neural
Networks
LLM

SAT Solving Logical
SMT Solving Reasoning

MaxSAT Solving

30



Improve formal reasoning for software systems using machine learning

Apply

Software Application cleverly

Effective Insightful information

Problem Modeling

Past experiences

Logical Formula < ML Model
Past experiences
Efficient :
Logical Reasoning Insightful information WeII designed

Logical Result Apply * Expensive to compute

* Quick and cheap to predict
* Prune the search space

cleverly

31



For software reliability,
What can we do to help?

Direction 1: Software Verification

Direction 2: Software Testing

32



Direction 2: Software Testing

Make software reliable
using testing

0.0

testing

33



Direction 2: Software Testing

0.0 :
. Searches the partial state space for bugs




Direction 1: Software Verification

If a bug is found, the system is unsafe!




Direction 2: Software Testing

Cannot Provides guarantees!

36



Direction 2: Software Testing

Software Testing Guest Lecture:
Presenter: Pengyu Nie (Assistant Professor at University of
Waterloo)

Readings:

1. Differential Testing
2. Metamorphic Testing
3. Regression Testing

Quiz before the lecture

37



Part 2: Research Topics in the intersection

. ML for SAT Solving

. ML for SMT Solving

. ML for Software Testing

. LLM for Software Testing
. LLM for Fuzzing

. ML for Software Verification

7. LLM for Software Verification

8. Software Verification for ML models
9. Software Testing for ML models

10. LLM for Code Generation

11. ML for Program Repair

12. Combining two Al systems:

ML and Formal Reasoning




Grading Details

https://wenxiwang.github.io/CS6501-016.html

39


https://wenxiwang.github.io/CS6501-016.html

	Slide 0: CS 6501 Machine Learning for Software Reliability (Fall 2024)
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Software is everywhere
	Slide 10
	Slide 11
	Slide 12:    Part 1   Direction 1: Software Verification  Direction 2: Software Testing 
	Slide 13:    Part 1   Direction 1: Software Verification  Direction 2: Software Testing 
	Slide 14: Direction 1: Software Verification
	Slide 15: Formal Reasoning
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Formal Reasoning for Software Systems
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Direction 1: Software Verification
	Slide 28: Direction 1: Software Verification
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Direction 1: Software Verification  Direction 2: Software Testing 
	Slide 33: Direction 2: Software Testing
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

