
Wenxi Wang

University of Virginia

wenxiw@virginia.edu

CS 6501 Machine Learning for Software Reliability
(Fall 2024)

• Instructor: Wenxi Wang (wenxiw@virginia.edu)

• TA: Mingtian Tan (wtd3gz@virginia.edu)

• Time: Mondays & Wednesdays 11:00am - 12:15pm

• Location: Rice Hall 011

• Office Hour: appointment on demand

1

Logistics

2

Course Objective

Objective: for you to gain an understanding of how research is
conducted in the field of machine learning for software engineering
General steps of doing research in CS:
Step 1: learn the fundamental knowledge and classic techniques in the field;

Step 2: find a specific research topic and a specific research problem

Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field

Step 4: find out what needs to be improved, propose new approach;

Step 5: design the algorithms, do the implementation;

Step 6: do the experimental evaluation: design your experimental setup, take the state-
of-the-art techniques as the baselines, evaluate your technique with the baselines;

Step 7: Write up the paper

Step 8: Present the paper!

3

Course Structure
General steps of doing research in CS:
Step 1: learn the fundamental knowledge and classic techniques in the field;
Step 2: find a specific research topic and a specific research problem
Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;
Step 5: design the algorithms, do the implementation;
Step 6: do the experimental evaluation
Step 7: Write up the paper
Step 8: Present the paper!

In-class
timeline:

Part 2: presenting papers in interdisciplinary research in various
topics, introducing the state-of-the-art techniques (Step 3, 8)
Also, Learn the SOTA techniques from others’ presentation by
just attending the class!

Off-class
timeline: Part 1: Read the provided

materials, talk to me, and
find a specific research topic
(Step 1 and 2)

Part 2: Talk to me,
do literature review
Write the proposal
(Step 3)

Part 3: More literature
review, talk to me,
propose new approach, do
the initial implementation
(Step 3, 4, and 5)

Part 4: Initial evaluation
results and write the
report
(Step 6 and 7)

Project
Presentation
(Step 8)

Part 1: introducing basic
concepts, fundamental
knowledge, classic techniques in
FM, SE, and ML (Step 1)

4

Course Structure
General steps of doing research in CS:
Step 1: learn the fundamental knowledge and classic techniques in the field;
Step 2: find a specific research topic and a specific research problem
Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;
Step 5: design the algorithms, do the implementation;
Step 6: do the experimental evaluation
Step 7: Write up the paper
Step 8: Present the paper!

Part 1: introducing basic
concepts, fundamental
knowledge, classic techniques in
FM, SE, and ML (Step 1)

In-class
timeline:

Part 2: presenting papers in interdisciplinary research in various
topics, introducing the state-of-the-art techniques (Step 3, 8)
Also, Learn the SOTA techniques from others’ presentation by
just attending the class!

Off-class
timeline: Part 1: Read the provided

materials, talk to me, and
find a specific research topic
(Step 1 and 2)

Part 2: Talk to me,
do literature review
Write the proposal
(Step 3)

Part 3: More literature
review, talk to me,
propose new approach, do
the initial implementation
(Step 3, 4, and 5)

Part 4: Initial evaluation
results and write the
report
(Step 6 and 7)

Project
Presentation
(Step 8)

5

Course Structure
General steps of doing research in CS:
Step 1: learn the fundamental knowledge and classic techniques in the field;
Step 2: find a specific research topic and a specific research problem
Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;
Step 5: design the algorithms, do the implementation;
Step 6: do the experimental evaluation
Step 7: Write up the paper
Step 8: Present the paper!

In-class
timeline:

Part 2: presenting papers in interdisciplinary research in various
topics, introducing the state-of-the-art techniques (Step 3, 8)
Also, Learn the SOTA techniques from others’ presentation by
just attending the class!

Off-class
timeline: Part 1: Read the provided

materials, talk to me, and
find a specific research topic
(Step 1 and 2)

Part 2: Talk to me,
do literature review
Write the proposal
(Step 3)

Part 3: More literature
review, talk to me,
propose new approach, do
the initial implementation
(Step 3, 4, and 5)

Part 4: Initial evaluation
results and write the
report
(Step 6 and 7)

Project
Presentation
(Step 8)

Part 1: introducing basic
concepts, fundamental
knowledge, classic techniques in
FM, SE, and ML (Step 1)

6

Course Structure
General steps of doing research in CS:
Step 1: learn the fundamental knowledge and classic techniques in the field;
Step 2: find a specific research topic and a specific research problem
Step 3: do a thorough literature review, learn the state-of-the-art techniques in the field
Step 4: find out what needs to be improved, propose new approach;
Step 5: design the algorithms, do the implementation;
Step 6: do the experimental evaluation
Step 7: Write up the paper
Step 8: Present the paper!

In-class
timeline:

Part 2: presenting papers in interdisciplinary research in various
topics, introducing the state-of-the-art techniques (Step 3, 8)
Also, Learn the SOTA techniques from others’ presentation by
just attending the class!

Off-class
timeline: Part 1: Read the provided

materials, talk to me, and
find a specific research topic
(Step 1 and 2)

Part 2: Talk to me,
do literature review
Write the proposal
(Step 3)

Part 3: More literature
review, talk to me,
propose new approach, do
the initial implementation
(Step 3, 4, and 5)

Part 4: Initial evaluation
results and write the
report
(Step 6 and 7)

Project
Presentation
(Step 8)

Part 1: introducing basic
concepts, fundamental
knowledge, classic techniques in
FM, SE, and ML (Step 1)

7

Course Evaluation

Part 1: introducing basic
concepts, fundamental
knowledge, classic techniques in
FM, SE, and ML

In-class
timeline:

Part 2: presenting papers in interdisciplinary research in the
field, introducing the state-of-the-art techniques
Also, Learn the SOTA techniques from others’ presentation by
just attending the class!

Off-class
timeline:

Part 1: Read the provided
materials, talk to me, and
find a specific research topic
(step 1 and 2)

Part 2: Do literature
review. Write the
proposal (Step 3)

Part 3: More literature
review, propose new
approach, do the initial
implementation
(Step 3, 4, and 5)

Part 4: Initial evaluation
results and write the
report (Step 6 and 7)

Quiz (5%): to see if you’ve
done the reading

Presentation (25%): teach
others the SOTA techniques in
the topic you are interested in
in

Participation (20%): Learn the
SOTA techniques from other topics
by actively attending the class!

Project proposal and
presentation (15%)

Final Project report and
presentation (35%)

Don’t stress!
You can share
your thoughts,
ideas, after the
reading!

8

Overview of Course Content

Software is everywhere

9

10

Bugs can cause horrible consequences…

Bugs can cause horrible consequences…

 What can we do to help?

11

Software is everywhere

 For software reliability,
 What can we do to help?

12

 Part 1

Direction 1: Software Verification

Direction 2: Software Testing

 For software reliability,
 What can we do to help?

13

 Part 1

Direction 1: Software Verification

Direction 2: Software Testing

Direction 1: Software Verification

Make software reliable
using formal reasoning

14
formal reasoning

Formal Reasoning

15

Involves various research domains

And more ……

16

Searches the entire state space for bugs

Direction 1: Software Verification

17

If no bug is found, the system is safe!

Direction 1: Software Verification

18

Provides correctness guarantees!

Direction 1: Software Verification

19

Systematically and logically analyze software systems with properties

Software
 System

PropertyAnalysis
 Results

Direction 1: Software Verification

Typically models software problems into logical formulas

20

Logical Formula

Software
 System

Property

Logical Results

Analysis
 Results

Modeling & Translate

Logical Reasoning

E.g., SAT and SMT Solving

Direction 1: Software Verification

Formal Reasoning for Software Systems

For example: Flight software verification in NASA

Logical Formula

Software
 System

Property

Logical Results
21

Analysis
 Results

Model & Translate

Logical Reasoning

Flight
Software

Correctness
Property

SAT Formula

SAT/UNSAT

SAT Solving

Correct/
Incorrect

22

Logical Formula

Software
 System

Property

Logical Results

Analysis
 Results

Modeling & Translate

Logical Reasoning

E.g., SAT and SMT Solving

Typically models software problems into logical formulas

Direction 1: Software Verification

23

Logical Formula

Logical Results

Problem Modeling

Logical Reasoning

Software Application

Simplified view: we focus on both analysis layers

Direction 1: Software Verification

Amazon Web Services makes a billion SMT queries daily
to ensure its cloud service security

24

Software Verification is Applied in Industry

Software Verification has many applications

But software verification is generally hard

25

Improve the scalability and applicability of
software verification

26

Direction 1: Software Verification

27

Improve the scalability of software verification
by enhancing and bridging both analysis layers

Software Application

Logical Reasoning

Logical Formula

Logical Result

Problem Modeling

Direction 1: Software Verification

Improve the scalability of software verification
by enhancing and bridging both analysis layers

using machine learning approaches

28

Machine
Learning

Approach

Software Application

Logical Reasoning

Logical Formula

Problem Modeling

Logical Result

Direction 1: Software Verification

Direction 1: Software Verification

v

29

Software Application

Logical
Reasoning

Logical Formula

Logical Result

Problem
Modeling

Approach

Operating
Systems

Cloud Services ML Models

Symbolic Execution
Alloy Toolset, …

SAT Solving
SMT Solving

MaxSAT Solving
Model Counting

….

Graph Neural
Networks

LLM

Supervised/
Unsupervised/
Reinforcement

Learning

Machine
Learning

Propositional
First-order logic, …

vetc…

v

30

Software Application

Logical
Reasoning

Logical Formula

Logical Result

Problem
Modeling

Approach

Operating
Systems

Cloud Services ML Models

Symbolic Execution
Alloy Toolset, …

SAT Solving
SMT Solving

MaxSAT Solving
Model Counting

….

Graph Neural
Networks

LLM

Supervised/
Unsupervised/
Reinforcement

Learning

Machine
Learning

Propositional
First-order logic, …

vetc…

Direction 1: Software Verification

31

Software Application

Logical Reasoning

Logical Formula

Logical Result

Problem Modeling

ML Model

Insightful information

Insightful information

• Expensive to compute
• Quick and cheap to predict
• Prune the search space

Well designed

Improve formal reasoning for software systems using machine learning

Apply
cleverly

Apply
cleverly

Past experiences

Past experiences

Effective
Problem Modeling

Efficient
Logical Reasoning

 For software reliability,
 What can we do to help?

32

Direction 1: Software Verification

Direction 2: Software Testing

Direction 2: Software Testing

Make software reliable
using testing

33
testing

34

Searches the partial state space for bugs

Direction 2: Software Testing

35

If a bug is found, the system is unsafe!

Direction 1: Software Verification

36

Cannot Provides guarantees!

Direction 2: Software Testing

37

Direction 2: Software Testing

Scalable!

38

Part 2: Research Topics in the intersection

1. ML for SAT Solving

2. ML for SMT Solving

3. ML for Software Testing

4. LLM for Software Testing

5. LLM for Fuzzing

6. ML for Software Verification

7. LLM for Software Verification

8. Software Verification for ML models

9. Software Testing for ML models

10. LLM for Code Generation

11. ML for Program Repair

12. Combining two AI systems:

 ML and Formal Reasoning

39

Grading Details

https://wenxiwang.github.io/CS6501-016.html

https://wenxiwang.github.io/CS6501-016.html

	Slide 0: CS 6501 Machine Learning for Software Reliability (Fall 2024)
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Software is everywhere
	Slide 10
	Slide 11
	Slide 12: Part 1 Direction 1: Software Verification Direction 2: Software Testing
	Slide 13: Part 1 Direction 1: Software Verification Direction 2: Software Testing
	Slide 14: Direction 1: Software Verification
	Slide 15: Formal Reasoning
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Formal Reasoning for Software Systems
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Direction 1: Software Verification
	Slide 28: Direction 1: Software Verification
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Direction 1: Software Verification Direction 2: Software Testing
	Slide 33: Direction 2: Software Testing
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

