
NEUROBACK: IMPROVING CDCL SAT 
SOLVING USING GRAPH NEURAL 
NETWORKS

WENXIWANG, YANG HU, MOHIT TIWARI, SARFRAZ KHURSHID, KEN MCMILLAN, RISTO MIIKKULAINEN

PRESENTED BY

RISHOV PAUL



BACKGROUND: SAT SOLVING

SAT solving refers to the process of determining whether there exists an

assignment of values (true/false) to variables such that a given Boolean formula in

Conjunctive Normal Form (CNF) evaluates to true

𝜑 = (x1 ∨ ¬ x2 ) ∧ (x2 ∨ x3) ∧ x2

Clauses: c1 = x1 ∨ ¬ x2 , c2 = x2 ∨ x3, c3 = x2

x1=True x2=True x3=False



BACKGROUND: 
CDCL SAT SOLVING

• Mainly relies on two kinds of 

variable related heuristics

• Variable branching heuristic

• Phase selection heuristic



BACKGROUND: BACKBONE VARIABLE

• Backbone variables are the variables whose phases remain consistent across all 

satisfying assignments.

𝜑 = (x1 ∨ ¬ x2 ) ∧ (x2 ∨ x3) ∧ x2

• Possible satisfying assignments:

• x1=True, x2=True, x3=False

• x1=True, x2=True, x3=True

two backbone variables, x1 and x2



BACKGROUND: GNN

• GNN is a family of neural network architecture that operate on graphs

• GNN Components

1. Node Embeddings:  These are feature vectors that represent the properties of each node

2. Message Passing:  At each layer, each node gathers information from its neighbors

3. Aggregation Function:  A function(such as mean or sum) that aggregates the messages from 

neighbours

4. Update Function: Once the node aggregates messages, it updates its feature vector based on this new 

information



BACKGROUND: GRAPH TRANSFORMER

• Transformers process sequential data (text, images) using self-attention to capture long-

range dependencies.

• Combining Transformers with GNN forms the Graph Transformer architecture, excelling 

in graph and node classification tasks

• GraphTrans model uses multiple GNN layers for local structure encoding, Transformer 

layers for global self-attention, and an FFN for classification.



RELATED WORKS

• Wu (2017) applied logistic regression to predict backbone phases but did not improve 

MiniSat's solving time

• Recent works (Biere et al., 2021; Al-Yahya et al., 2022) focus on using heuristic search to 

partially compute the backbone during CDCL solving

• NeuroSAT (Selsam et al., 2018) introduced neural models for SAT solving, but with 

limited effectiveness for large-scale problems

• NeuroCore (Selsam & Bjørner, 2019) enhances CDCL branching heuristics via online 

inference



INTRODUCTION TO NEUROBACK

• NeuroBack employs offline model predictions on variable phases

• It executes solely on CPU 

• Independent of GPU resources

• It enhances the phase selection heuristics in CDCL solvers

• Applies a GNN model, trained solely on predicting the phases of backbone 

variables, to predict the phases of all variables



OVERVIEW OF NEUROBACK WORKFLOW



GRAPH REPRESENTATION OF CNF FORMULA

𝜑 = (v1 ∨ v2) ∧ (v2 ∨ v3) ∧ (v3 ∨ v4)

• Two node types represent the variables and 

clauses

• Each edge connects a variable node to a clause 

node

• Meta node(m) for each connected component in 

the graph, with meta edges connecting the meta 

node to all clause nodes in the component



GNN MODEL DESIGN

• Inspired by graph transformer architecture, GraphTrans

• GraphTrans has two limitations

• It does not explicitly integrate topological graph structure when calculating attention scores

• Global self-attention mechanism computes attention scores for all possible node pairs, leading to quadratic memory 

complexity

• Our novel transformer combines GSA and LSA replacing the global self attention of original transformer

• GSA calculates attention scores solely for directly connected node pairs, leveraging information of edges and 

edge weights

• LSA segments each node embedding into multiple node patches and computes attention scores for each pair of 

node patches

• Linear memory complexity in terms of the number of edges and nodes in the graph



GNN MODEL 
ARCHITECTURE

• Three main components

• Each transformer block has a normalization layer, 

followed by FFN and GSA/LSA layers to enhance 

training efficiency



DATABACK DATASET DESCRIPTION

• DataBack is a dataset of SAT CNF formulas labelled with backbone variable phases, for pre-

training and fine-tuning the NeuroBack model

• Two sets:

• DataBack-PT

• DataBack-FT

• Cadiback is used to extract the backbone label

• Label collection timeout for PT: 1000 seconds

• Label collection timeout for FT: 5000 seconds

• Significant label imbalance in both DataBack-PT and DataBack-FT



DATA 
AUGMENTATION 
STRATEGY

• Original formula:  𝜑 = (x1 ∨ ¬ x2 ) ∧ (x2 ∨ x3) ∧ x2 

• Backbone variable {x1, x2} → {True}

• Create a dual formula by negating all backbone variables 

in the original formula

• Dual formula:  𝜑′ = (¬ x1 ∨ x2 ) ∧ (¬ x2 ∨ x3) ∧ ¬ x2

• Backbone variable {x1, x2} → {False} opposite phase



MODEL PRE-TRAINING AND FINE-TUNING

• Loss function: Binary cross entropy (BCE)

• Optimizer: AdamW optimizer

• Learning rate: 10^-4

• Number of epoch

• Pre-training – 40

• Fine-tuning – 60



APPLICATION OF PREDICTIONS

• Leverage phase predictions from GNN model to improve phase selection heuristics

• Use Kissat solver (Biere & Fleury, 2022) for phase initialization with NeuroBack

predictions

• Resulting implementation is called NeuroBack-Kissat.



NEUROBACK MODEL PERFORMANCE

Model/metrics Precision Recall F1 Accuracy

pre-trained model 0.903 0.766 0.829 0.751

fine-tuned model 0.941 0.914 0.928 0.887

NeuroBack model pre-trained on the entire DataBack-PT dataset.

Fine-tuned on 90% of DataBack-FT samples, with 10% used as validation set. 

Results indicate pre-training helps the model extract generalized knowledge about backbone phase prediction.

Fine-tuning improved performance by 4% to 15% across all metrics.

Final precision, recall, and F1 score all exceeded 90%.

NeuroBack effectively learns to predict backbone phases through pre-training and fine-tuning.



NEUROBACK SOLVING EFFECTIVENESS

• Testing dataset: 800 CNF formulas from the main track of SATCOMP-2022 and 

SATCOMP-2023

• Baseline solvers

• Default-Kissat: Sets the initial phase of each variable to true

• Random-Kissat: randomly assigns the initial phase of each variable as either true or 

false

• Solving time limit: 5000 seconds



• Model inference for each NeuroBack 

solver was conducted solely on the CPU, 

with a memory limit of 10GB

• 308 problems from SATCOMP-2022 and 

353 problems from SATCOMP-2023 were 

successfully inferred

• The CPU inference time for each of these 

problems ranged from 0.3 to 16.5 seconds, 

averaging at 1.7 seconds

Model Inferred 

Problems

(2022)

Solved 

Problems

(2022)

Inferred 

Problems

(2023)

Solved 

Problems

(2023)

Default-

Kissat

308 193 353 198

Random-

Kissat

308 197 353 190

NeuroBack-

Kissat

308 203 353 204



NEUROBACK 
PERFORMANCE 
ON TESTING TEST

• NeuroBack-Kissat consistently outperforms both Default-Kissat and Random-Kissat

• Outperforms Default-Kissat on 43 and 40 more problems in SATCOMP-2022 and 

2023, reducing solving time by 117 and 36 seconds per problem

• Outperforms Random-Kissat on 22 and 29 more problems in SATCOMP-2022 and 

2023, reducing solving time by 98 and 246 seconds per problem

• NeuroBack phase initialization outperforms both default and random in Kissat, 

showing improved performance in solving SATCOMP-2022 and 2023 problems



SUMMARY

• NeuroBack improves CDCL SAT solvers without needing GPU resources during 

application

• Uses offline model inference on variable phases from satisfying assignments to enhance 

phase selection heuristics

• Integrated with the Kissat solver, it significantly reduces solving time and increases the 

number of solved instances in SATCOMP-2022 and 2023

• NeuroBack demonstrates potential in boosting SAT solvers with machine learning
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BACKGROUND: 
IAM

IAM (Identity and Access Management) is an access 

control service in cloud platform



IAM EXAMPLE



IAM ANOTHER EXAMPLE: 
CONFIGURATION CHANGE



BACKGROUND: IAM
MISCONFIGURATION

CAN LEAD TO PRIVILEGE ESCALATIONS!



PROBLEM 
DEFINITION: 
PRIVILEGE 
ESCALATION

An IAM configuration is safe if no PE exists

∃ e ∈ E. ∃ p ∈ P. e obtains p by applying a sequence of 
permissions

Given a set E of untrusted entities and a set 

P of sensitive permissions in an IAM configuration C, 

PE exists iff 



A SIMPLE  EXAMPLE 



A SIMPLE  EXAMPLE CONTD



A SIMPLE  EXAMPLE CONTD



GOAL

Repair IAM misconfigurations to prevent PEs



PROBLEM 
DEFINITION: 
IAM REPAIR 
GOAL

rmin = argminr |r| s.t. R(c, r) is safe

c:   IAM misconfiguration

r:   a list repair operations

|r|:   patch size

R(c, r):   apply r on c



VALID BUT NON-MINIMAL IAM REPAIR 



MINIMAL IAM REPAIR 

Maintains maximum permission assignments



CHALLENGE

• Real-world IAM configurations are very complicated

• Lots of entities, permissions and connections among them

MAIN GOAL

Automatically repair IAM misconfigurations to prevent PE



INSIGHT

Using MaxSAT to automatically produce 

the

minimal IAM repair



BACKGROUND: MAXSAT



REPAIR WAY - MAXSAT

• Model the IAM repair problem into MaxSAT problem

• Hard clauses

• Safety verification

• Untrusted entities can never gain sensitive permissions

• Soft clauses

• Repair operations

• Maintain maximum permission assignments



MAXSAT ISSUE

• But there is scalability issue here

• Directly encoding a finite state to cover all possible states can result in a massive number 

of propositional constraints.

• This approach poses significant challenges when verifying repairs at scale.



OPTIMIZED APPROACH:  IAMPERE

• Improves MaxSAT scalability with GNN

• Prune search space for the MaxSAT solver by employing deep learning

• IAM configurations are made graph structured

• Consists of two phases

• Training phase

• Testing phase



RELATIONAL MODEL OF 
IAM MISCONFIGURATION

Real world IAM PE in 2019



PERMISSION 
FLOW GRAPH

A PFG is proposed to represent

• How permissions are directly 

or indirectly assigned to entities

• It  includes entities as its 

nodes (annotated with 

permissions assigned to the 

entities)

• permission flows as its edges.

• Perm 3 allows Service 1 to assume Role 1

• A disabled permission flow edge is added from Role 1 to Service 1

• The disabled edge can be enabled in the future if the compromised entity applies Perm 3 to assume Role 1



MODELING: SEMANTIC 
REPRESENTATION OF 
IAM CONFIGURATION

directly assigned permissions 

are indirectly assigned to the 

corresponding entities 

according to the enabled 

permission flows



MODELING: SEMANTIC REPRESENTATION OF PE

Service 1 is the untrusted entity who wants Perm 1 (target permission)

Perm 3 allows Service 1 to assume Role 1



REPAIR ON IAM SEMANTIC REPRESENTATIONS

• The Semantic Representation Reduction

• Include only the entities and permission flows that 

are relevant to the IAM PEs



REPAIR ON IAM SEMANTIC REPRESENTATIONS
CONTD

• Safety Verification of IAM Configurations

• Initially model the problem as a Model Checking problem

• Given the finite-state machine, we check the safety property, asserting that no error 

states can be reached from the initial state

• Apply Fixed Point Iteration (FPI) based approach to solve the problem.



REPAIR ALGORITHM ON SEMANTIC 
REPRESENTATION

• Use GNN to rank repair operations based 

on likelihood of being in the true minimum 

patch

• Iteratively select top-k repair operations 

to form an intermediate patch

• Find the minimum patch from the 

intermediate patch

• Use FPI-based Model Checking to 

compute the bound

• Apply BMC-based MaxSAT to generate 

repairs for the bounded safety property



Training and testing for GNN assisted MaxSAT repair



RELATED WORK OF REPAIRING PE

• IAM-Deescalate(by Palo Alto Networks) 

• The only existing PE repair tool

• Limitations:

• Graph Modeling Focus: Limited to authentication-based repairs, unable to handle non-authentication 

strategies (e.g., default IAM policy version changes)

• Transitive Privilege Escalations: Ignores non-admin entities like services that can lead to privilege 

escalations

• Limited Repair Operations: Only supports revoking permissions, not broader actions like removing 

users from groups

• Patch Objective: Focuses on identifying patches without reducing or optimizing for the minimum patch 

size.



EXPERIMENTAL SETUP

• CASHWMaxSAT-CorePlus as MaxSAT solver

• Winner in the Main track of MaxSAT Evaluation 2022

• Baselines

• IAM-Deescalate: only existing IAM PE repair tool

• IAMPERE-MO: exclusively employs the MaxSAT solver to generate repair

• IAMPERE-GO: relies solely on GNN to generate the intermediate patch



DATASETS COLLECTION

• Total 4 sets

• Training set, validation set, Test-A and Test-B

• Utilized IAM PE task generator, IAMVulGen by Hu et al

• for Training and Validation set

• randomly generate 40,000 IAM misconfigurations with PEs for training and validation

• apply IAMPERE-MO to obtain minimum patches

• acquire 11,933 IAM misconfigurations with minimum patches within the time limit

• Each IAM misconfiguration contains between 

• 8 and 336 entities, 24 and 15,525 permissions, and 7 and 15,263 permission flows.

• Training-validation ratio 90-10



For testing set Test-A

Randomly generate 1,000 IAM misconfigurations

Each IAM misconfiguration contains between 

• 11 and 315 entities

• 42 and 11,737 permissions

• 12 and 11,543 permission flows

For testing set Test-B

Collect five real-world IAM configurations 

Owned by cloud customers from a US-based 
security startup

Two of them are misconfigurations

• Real-1:  251 entities, 2,826 permissions, and 
27,939 permission flows

• Real-2: 158 entities, 882 permissions, and 
8,704 permission flows

• both misconfigurations comprise over 10 PEs

• transitive PE and have PE path lengths of at 
least 5



METRICS AND TIME LIMIT

• Evaluation metrics

• Effectiveness: relative patch size = patch size / max patch size

• Efficiency: time cost

• Solving time for each repair

• 600 seconds for training, validation and Test-A

• 2 hours for Test-B



EFFECTIVENESS EVALUATION ON TEST-A

• Both IAMPERE and IAMPERE-MO 

significantly improve upon IAM-

Deescalate in terms of patch size

• IAMPERE not only repairs more 

configs but also produces small 

patches



EFFICIENCY EVALUATION ON TEST-A

• IAM-Deescalate is significantly 

outperformed by IAMPERE and its 

variants.

• IAMPERE is consistently more efficient 

than IAMPERE-MO repairing 220 more 

IAM misconfigurations exactly at the time 

limit

• The high performance of IAMPERE-GO in 

terms of repair time cost demonstrates 

that GNN model inference for 

intermediate repairs is highly efficient



PERFORMANCE ON TEST-B

IAM 

Misconfiguration

Model Repair 

time(seconds)

Relative Patch Size

Real-1 IAM-Deescalate Failed Failed

Real-1 IAMPERE-MO Failed Failed

Real-1 IAMPERE-GO 5147 0.889

Real-1 IAMPERE 7200 0.889

Real-2 IAM-Deescalate Failed Failed

Real-2 IAMPERE-MO 3963 0.0048

Real-2 IAMPERE-GO 2107 0.741

Real-2 IAMPERE 1190 0.0048



SUMMARY

• MaxSAT Limitation: Sole reliance on MaxSAT can exceed time limits for fixing real-world 

misconfigurations

• GNN + MaxSAT Combination: Reduces time and helps generate smaller,  potentially minimal 

patches

• IAMPERE Limitation: Aims to generate an approximately minimum patch by leveraging GNN, it does 

not guarantee the absolute minimum, which makes the approach incomplete

• Broader Impact: GNN’s effectiveness in aiding MaxSAT shows promise beyond just IAM PE 

• planning and scheduling

• Verification and validation

• bioinformatics
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