Wenxi Wang University of Virginia wenxiw@virginia.edu

Logical Reasoning

Recap

Logical Formula SAT Solving SAT Formula Satisfiability SMT Solving SMT Formula Satisfiability Model Counting SAT Formula Solution Count MaxSAT Solving SAT Formula Maximum Satisfiability Logical Result Logical Reasoning In this lecture, we focus on a specific logical reasoning- **SAT solving**

Logical Reasoning

Propositional Logic

Variables: Boolean

Operators sorted by precedence: ¬ >> ∧ >> ∨ >> ⇒ >> ⇔

General Workflow

Logical Reasoning

In this lecture, we focus on **SMT solving**

First-order logic

First-order logic extends propositional logic with **quantifiers** and the **nonlogical symbols,** representing all kinds of **theories**.

Example:

- ∃y ∈ Z. ∀x ∈ Z. x > y ,
- ∀n ∈ N. ∃p ∈ N. n > 1 => (*isprime*(p) ∧ n < p < 2n) ,

where ">", "isprime" are nonlogical symbols

Bit vectors: ((a>> b) & c) < c **Arithmetic:** $(2x + 3y \le 5)$ ∨ $(y + 5y - 10z \ge 6)$ **Equality**: $y1 = y2 \land \neg(y1 = y3) \Rightarrow \neg(y2 = y3)$ **Arrays**: $(i = j \land a[j] = 1) \Rightarrow a[i] = 1$ **… …**

Let's focus on a simple case: From Propositional to Quantifier-Free Theories

Example: $F = x1 + x2 > 9$ \vee $x2 \neq x3$ \wedge $x2 = x3$ \Longleftrightarrow $x4 > x5$ \wedge $A \wedge \neg B$ b1 b2 b3

Propositional Skeleton PS $F = (b1 \vee \neg b2) \wedge b2 \leq b3 \wedge A \wedge \neg B$

Interpretation of symbols is important! **Syntax to Semantics**

Example

 $F: x + y > z => y > z - x$ We construct a "standard" interpretation **I** The domain is the integers, $\mathbb{Z}:D$ $I=\mathbb{Z}=\{..., -2, -1, 0, 1, 2, ...\}$ α $I:\{ + \mapsto +\mathbb{Z}, -\mapsto -\mathbb{Z}, \times \mapsto \times \mathbb{Z}, \times \mapsto -10, \gamma \mapsto -39, \chi \mapsto -2 \}$

T-satisfiability

Let T be a Σ -theory.

A **Σ-**formula *ϕ* is T-satisfiable if there exists an interpretation *I* such that the interpretation satisfies *ϕ, I* **|***= ϕ*.

Two main approaches for SMT

Lazy Approach:

Integrate a theory solver with a CDCL solver for SAT

Eager Approach Encode the SMT formula to a equi-satisfiable SAT formula

General Algorithm

General framework

Running Example

```
(x = y) ∧ (y = z) ∧ (x ≠ z)
```


Running Example

```
(x = y) ∧ (y = z) ∧ (x ≠ z)
```


Running Example

```
(x = y) ∧ (y = z) ∧ (x ≠ z)
```


Running Example

```
(x = y) ∧ (y = z) ∧ (x ≠ z)
```


Running Example

```
(x = y) ∧ (y = z) ∧ (x ≠ z)
```


Running Example

```
(x = y) ∧ (y = z) ∧ (x ≠ z)
```


Running Example

```
(x = y) ∧ (y = z) ∧ (x ≠ z)
```


Running Example

```
(x = y) ∧ (y = z) ∧ (x ≠ z)
```


Still not efficient enough …

waste time to compute the complete SAT assignment

Do Theory Propagation when the SAT assignment is still partial!

Example

a formula that contains literals $x1 \geq 12$ and $x1 < 2$

Assume SAT makes $e(x1 \ge 12)$ true,

Theory solver detects that $\neg(x1 < 2)$ is implied, that is

 $e(x1 \ge 12) \Rightarrow -e(x1 < 2)$

Then $\neg e(x1 ≥ 12)$ V $\neg e(x1 < 2)$ is added to SAT solver

Call theory solver to do Theory Propagation when the SAT assignment is still partial!

