
Wenxi Wang

University of Virginia

wenxiw@virginia.edu

SMT Solving

Logical Reasoning

Logical Formula

SAT Solving

SAT Formula

Satisfiability

SMT Solving

SMT Formula

Satisfiability

Model Counting

SAT Formula

Solution Count

MaxSAT Solving

SAT Formula

1

Maximum
Satisfiability

Logical Result

Logical Reasoning

In this lecture, we focus on a specific logical reasoning- SAT solving

Recap

Logical Reasoning

2

Propositional Logic

Recap

Variables: Boolean

Operators sorted by precedence:

¬ >> ∧ >> ∨ >> ⇒ >> ⇔

3

CDCL SAT solving

General Workflow

Recap

Logical Reasoning

Logical Formula

SAT Solving

SAT Formula

Satisfiability

SMT Solving

SMT Formula

Satisfiability

Model Counting

SAT Formula

Solution Count

MaxSAT Solving

SAT Formula

4

Maximum
Satisfiability

Logical Result

Logical Reasoning

In this lecture, we focus on SMT solving

5

SMT Solving

SMT: Satisfiability Modulo Theory

SAT Theory SMT

Bit vectors: ((a>> b) & c) < c

Arithmetic: (2x + 3y ≤ 5) ∨ (y + 5y − 10z ≥ 6)

Equality: y1 = y2 ∧ ¬(y1 = y3) ⇒ ¬(y2 = y3)

Arrays: (i = j ∧ a[j] = 1) ⇒ a[i] = 1

… …

6

SMT Solving

First-order logic

First-order logic extends propositional logic with quantifiers and the
nonlogical symbols, representing all kinds of theories.

Example:
• ∃y ∈ Z. ∀x ∈ Z. x > y ,
• ∀n ∈ N. ∃p ∈ N. n > 1 => (isprime(p) ∧ n < p < 2n) ,
where “>”, “isprime” are nonlogical symbols

Bit vectors: ((a>> b) & c) < c

Arithmetic: (2x + 3y ≤ 5) ∨ (y + 5y − 10z ≥ 6)

Equality: y1 = y2 ∧ ¬(y1 = y3) ⇒ ¬(y2 = y3)

Arrays: (i = j ∧ a[j] = 1) ⇒ a[i] = 1

… …

Propositional Skeleton PS_F = (𝑏1 ∨ ¬𝑏2) ∧ 𝑏2 <=> 𝑏3 ∧ 𝐴 ∧ ¬𝐵
𝑏1: 𝑥1 + 𝑥2 > 9
𝑏2: 𝑥2 = 𝑥3
𝑏3: 𝑥4 > 𝑥5

7

SMT Solving
Let’s focus on a simple case:

From Propositional to Quantifier-Free Theories

Example:
F = 𝑥1 + 𝑥2 > 9 ∨ 𝑥2 ≠ 𝑥3 ∧ 𝑥2 = 𝑥3 <=> 𝑥4 > 𝑥5 ∧ 𝐴 ∧ ¬𝐵

b1 b2 b3

can be denoted as
e(x1+x2>9)

can also be denoted
as e(x2 = x3)

can also be denoted
as e(𝑥4 > 𝑥5)

8

SMT Solving

Example

F : x + y > z => y > z − x
We construct a “standard” interpretation I
The domain is the integers, ℤ:𝐷_I =ℤ={…,−2,−1,0,1,2,…}
𝛼_𝐼:{ + ⟼+ℤ, − ⟼−ℤ, > ⟼>ℤ, 𝑥⟼10, 𝑦⟼39, 𝑥⟼-2}

Interpretation of symbols is important!
Syntax to Semantics

9

SMT Solving

Let T be a Σ-theory.

A Σ-formula ϕ is T-satisfiable if there exists an interpretation I
such that the interpretation satisfies ϕ, I |= ϕ.

T-satisfiability

10

SMT Solving

Lazy Approach:
Integrate a theory solver with a CDCL solver for SAT

Eager Approach
Encode the SMT formula to a equi-satisfiable SAT formula

Two main approaches for SMT

11

Lazy SMT Solving

General Algorithm

12

Lazy SMT Solving

General framework

851036
SAT Solver

Theory
Solver

SATUNSAT

Complete satisfying
assignments

Conflict
clauses

model

13

Running Example

851036

(x = y) ∧ (y = z) ∧ (x ≠ z)

Propositional skeleton PS: b1 ∧ b2 ∧ b3

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

Lazy SMT Solving

Complete satisfying
assignments

14

Running Example

851036

(x = y) ∧ (y = z) ∧ (x ≠ z)

Propositional skeleton PS: b1 ∧ b2 ∧ b3

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

b1 ∧ b2 ∧ b3

Lazy SMT Solving

Complete satisfying
assignments

15

Running Example

851036

(x = y) ∧ (y = z) ∧ (x ≠ z)

Propositional skeleton PS: b1 ∧ b2 ∧ b3

b1 = 1, b2 =1, b3 = 1

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

b1 ∧ b2 ∧ b3

Lazy SMT Solving

Complete satisfying
assignments

16

Running Example

851036

(x = y) ∧ (y = z) ∧ (x ≠ z)

Propositional skeleton PS: b1 ∧ b2 ∧ b3

b1 = 1, b2 =1, b3 = 1

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

b1 ∧ b2 ∧ b3

(x = y) ∧ (y = z) ⇒ (x = z)

Conflict

Lazy SMT Solving

Complete satisfying
assignments

17

Running Example

851036

(x = y) ∧ (y = z) ∧ (x ≠ z)

Propositional skeleton PS: b1 ∧ b2 ∧ b3

b1 = 1, b2 =1, b3 = 1

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

b1 ∧ b2 ∧ b3

(x = y) ∧ (y = z) ⇒ (x = z)

b𝟏 ∧ b2 ⇒ ¬ b3

Conflict

Lazy SMT Solving

Complete satisfying
assignments

18

Running Example

851036

(x = y) ∧ (y = z) ∧ (x ≠ z)

Propositional skeleton PS: b1 ∧ b2 ∧ b3

b1 = 1, b2 =1, b3 = 1

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

b1 ∧ b2 ∧ b3

(x = y) ∧ (y = z) ⇒ (x = z)

¬ b𝟏∨ ¬ b2 ∨ ¬ b3 Conflict

Lazy SMT Solving

Complete satisfying
assignments

19

Running Example

851036

(x = y) ∧ (y = z) ∧ (x ≠ z)

Propositional skeleton PS: b1 ∧ b2 ∧ b3

b1 = 1, b2 =1, b3 = 1

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

b1 ∧ b2 ∧ b3

(x = y) ∧ (y = z) ⇒ (x = z)

¬ b𝟏∨ ¬ b2 ∨ ¬ b3 Conflict

Lazy SMT Solving

Complete satisfying
assignments

20

Lazy SMT Solving
Running Example

851036

(x = y) ∧ (y = z) ∧ (x ≠ z)

Propositional skeleton PS: b1 ∧ b2 ∧ b3

b1 = 1, b2 =1, b3 = 1

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

b1 ∧ b2 ∧ b3

(x = y) ∧ (y = z) ⇒ (x = z)

Conflict¬ b𝟏∨ ¬ b2 ∨ ¬ b3

Lazy SMT!

Complete satisfying
assignments

21

Lazy SMT Solving

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

Still not efficient enough …

Example, a formula that contains literals

𝑥1 ≥ 12 and 𝑥1 < 2

Assume SAT assigns 𝑒(𝑥1 ≥ 12)↦true and 𝑒(𝑥1 < 2)↦true.

𝑥1 is integer

Lazy SMT solving does not call
Theory solver until a full
satisfying assignment is found.

waste time to compute the complete SAT assignment

Complete satisfying
assignments

Any call to Theory solver results in a contradiction between these two facts.

22

Improvements: DPLL(T)
Do Theory Propagation when the SAT

assignment is still partial!

Example

a formula that contains literals 𝑥1 ≥ 12 and 𝑥1 < 2

Assume SAT makes 𝑒(𝑥1 ≥ 12) true,

Theory solver detects that ¬(𝑥1 < 2) is implied, that is

 𝑒(𝑥1 ≥ 12) => ¬e(𝑥1 < 2)

Then ¬𝑒(𝑥1 ≥ 12) ∨ ¬e(𝑥1 < 2) is added to SAT solver

23

Call theory solver to do Theory Propagation
when the SAT assignment is still partial!

Improvements: DPLL(T)

24

Call theory solver to do Theory Propagation
when the SAT assignment is still partial!

Improvements: DPLL(T)

25

Call theory solver to do Theory Propagation
when the SAT assignment is still partial!

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict
clauses

model

Complete satisfying
assignments

851036
SAT Solver

Theory
Solver

SATUNSAT

Conflict clauses
/propagated

clauses

model

Complete/partial
satisfying

assignments

Improvements: DPLL(T)

	Slide 0: SMT Solving
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

