Wenxi Wang University of Virginia wenxiw@virginia.edu

Logical Reasoning

Recap

Logical Reasoning

Propositional Logic

Variables: Boolean

Operators sorted by precedence: $\neg >> \land >> \lor \Rightarrow \Rightarrow \Rightarrow \Leftrightarrow$

General Workflow

Logical Reasoning

In this lecture, we focus on SMT solving

First-order logic

First-order logic extends propositional logic with quantifiers and the nonlogical symbols, representing all kinds of theories.

Example:

- $\exists y \in Z. \ \forall x \in Z. \ x > y$,
- $\forall n \in N$. $\exists p \in N$. $n > 1 => (isprime(p) \land n ,$

where ">", "isprime" are nonlogical symbols

Bit vectors: $((a \ge b) \& c) < c$ **Arithmetic**: $(2x + 3y \le 5) \lor (y + 5y - 10z \ge 6)$ **Equality**: $y1 = y2 \land \neg (y1 = y3) \Rightarrow \neg (y2 = y3)$ **Arrays**: $(i = j \land a[j] = 1) \Rightarrow a[i] = 1$

Let's focus on a simple case: From Propositional to Quantifier-Free Theories

Example: $F = x1 + x2 > 9, \forall x2 \neq x3 \land x2 = x3 <=> x4 > x5 \land A \land \neg B$ b1 b2 b3

Propositional Skeleton PS_F = ($b1 \lor \neg b2$) $\land b2 <=> b3 \land A \land \neg B$

Interpretation of symbols is important! Syntax to Semantics

Example

F : x + y > z => y > z - x We construct a "standard" interpretation I The domain is the integers, $\mathbb{Z}:D_I = \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ $\alpha_I: \{+ \mapsto +\mathbb{Z}, - \mapsto -\mathbb{Z}, > \mapsto > \mathbb{Z}, x \mapsto 10, y \mapsto 39, x \mapsto -2\}$

T-satisfiability

Let T be a Σ -theory.

A Σ -formula φ is T-satisfiable if there exists an interpretation I such that the interpretation satisfies φ , $I \models \varphi$.

Two main approaches for SMT

Lazy Approach:

Integrate a theory solver with a CDCL solver for SAT

Eager Approach Encode the SMT formula to a equi-satisfiable SAT formula

General Algorithm

Algorithm LAZY-CDCL
$\begin{array}{llllllllllllllllllllllllllllllllllll$
1. function Lazy-CDCL
2. ADDCLAUSES $(cnf(e(\varphi)));$
3. while (TRUE) do
4. while $(BCP() = "conflict")$ do
5. $backtrack-level := ANALYZE-CONFLICT();$
 if backtrack-level < 0 then return "Unsatisfiable";
 else BackTrack(backtrack-level);
8. if \neg DECIDE() then \triangleright Full assignment
9. $\langle t, res \rangle := \text{DEDUCTION}(\hat{Th}(\alpha)); \qquad \triangleright \alpha \text{ is the assignment}$
10. if <i>res</i> ="Satisfiable" then return "Satisfiable";
11. $ADDCLAUSES(e(t));$

General framework

Running Example

```
(x = y) \land (y = z) \land (x \neq z)
```


Running Example

```
(x = y) \land (y = z) \land (x \neq z)
```


Running Example

```
(x = y) \land (y = z) \land (x \neq z)
```


Running Example

```
(x = y) \land (y = z) \land (x \neq z)
```


Running Example

```
(x = y) \land (y = z) \land (x \neq z)
```


Running Example

```
(x = y) \land (y = z) \land (x \neq z)
```


Running Example

```
(x = y) \land (y = z) \land (x \neq z)
```


Running Example

```
(x = y) \land (y = z) \land (x \neq z)
```


 $(x = y) \land (y = z) \Rightarrow (x = z)$

Still not efficient enough ...

waste time to compute the complete SAT assignment

Do Theory Propagation when the SAT assignment is still partial!

Example

a formula that contains literals $x1 \ge 12$ and x1 < 2

Assume SAT makes $e(x1 \ge 12)$ true,

Theory solver detects that $\neg(x1 < 2)$ is implied, that is

 $e(x1 \ge 12) => \neg e(x1 < 2)$

Then $\neg e(x1 \ge 12) \lor \neg e(x1 < 2)$ is added to SAT solver

Call theory solver to do Theory Propagation when the SAT assignment is still partial!

Algorithm LAZY-CDCL	AlgorithmDPLL (T)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	1. function $DPLL(T)$
1. function LAZY-CDCL	2. ADDCLAUSES $(cnf(e(\varphi)));$
2. ADDCLAUSES $(cnf(e(\varphi)));$	3. while (TRUE) do
3. while (TRUE) do	4. repeat
4. while $(BCP() = "conflict")$ do	5. while $(BCP() = "conflict")$ do
5. $backtrack-level := ANALYZE-CONFLICT();$	6. $backtrack-level := ANALYZE-CONFLICT();$
6. if <i>backtrack-level</i> < 0 then return "Unsatisfi	7. if <i>backtrack-level</i> < 0 then return "Unsatisfiable";
 else BackTrack(backtrack-level); 	8. else BackTrack(<i>backtrack-level</i>);
8. if \neg DECIDE() then	9. $\langle t, res \rangle := \text{DEDUCTION}(\hat{Th}(\alpha));$
9. $\langle t, res \rangle$:=DEDUCTION $(\hat{T}h(\alpha))$; $\triangleright \alpha$ is	10. $ADDCLAUSES(e(t));$
	11. until $t \equiv TRUE$,
	12. if α is a <i>full</i> assignment then return "Satisfiable";
11. $ADDCLAUSES(e(t));$	13. $DECIDE();$

