
Software Testing & Machine Learning

Pengyu Nie <pynie@uwaterloo.ca>

Agenda

• Background on software testing
• Machine learning for software testing

2

What is Testing and Why

• "The process of evaluating and verifying that a
software product or application does what it’s
supposed to do"

• Why
• Prevent bugs (from troubling users of software)
• Ensure software quality
• Improve performance

• Takes ~50% of software development time!

3
Source: https://www.ibm.com/topics/software-testing

Regression Testing

• Regression testing focuses on finding defects after a major code
change has occurred

4

def add(a, b):
 return a + b

def add(m: float, n: float) -> float:
 return m + n

def test_add_int():
 assert add(1, 2) == 3

def test_add_int():
 assert add(1, 2) == 3

def test_add_float():
 assert add(1.0, 3.2) == 4.2

v1 v2

Arrange, Act, Assert

5

def test_duckduckgo_instant_answer_api_search():

 url = 'https://api.duckduckgo.com/?q=python+programming&format=json'

 response = requests.get(url)
 body = response.json()

 assert response.status_code == 200
 assert 'Python' in body['AbstractText']

Source: https://automationpanda.com/2020/07/07/arrange-act-assert-a-pattern-for-writing-good-tests/

arrange
prepare test inputs

act
invoke code under test

assert
aka test oracles

check expected outcomes

name

What if we don't have the test oracles?

Differential Testing

• "If a single test is fed to several comparable programs, and one
program gives a different result, a bug may have been exposed"

6
Source: https://www.cs.swarthmore.edu/~bylvisa1/cs97/f13/Papers/DifferentialTestingForSoftware.pdf

def add(a, b):
 return a + b

add(1, 2)

add.py
CPython 3.9

CPython 3.10

PyPy 3.10

My secret Python
interpreter v0.1

3

3

3

4 likely wrong

likely correct

likely correct

likely correct

test inputs
can be randomly generated

Metamorphic Testing

• Test oracles → metamorphic relationships
"necessary properties of the target function or algorithm in
relation to multiple inputs and their expected outputs"

7

def add(a, b):
 return a + b

metamorphic relationship:
∀𝑎, 𝑏. add 𝑎, 𝑏 = add 𝑏, 𝑎

assert add(1, 2) == add(2, 1)
assert add(-3, -4) == add(-4, -3)
assert add(math.pi, math.e) == add(math.e, math.pi)
...

Granularities of Testing

8

for the entire software system

for multiple parts/modules

for a module/method/function

for a line of code

Yu Liu, Pengyu Nie, Owolabi Legunsen, and Milos Gligoric. Inline Tests. In ASE'22.

Test {Selection, Minimization, Prioritization}

• What if we have a lot of tests to run?
• Regression test selection / RTS

• Only run the subset of tests that are affected by code changes

• Test minimization
• Remove the redundant tests which do not lead to any benefit (in terms of

code coverage / mutation score)

• Test prioritization
• Execute the important tests first (e.g., related to code changes, higher

contributions to code coverage / mutation score)
in the hope that they will find bugs early

9

Machine Learning for Software Testing

Learning Deep Semantics for Test Completion
work by Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos Gligoric. In ICSE'23.

10

Motivation: Writing Tests is Tedious

• Testing is the most frequently-used technique to ensure software
correctness

• Writing tests can take a lot of manual efforts
(~50% of development time)

• Automatically generated tests (e.g., by random testing) have
stylistic issues and do not replace the need of manual efforts

11

Goal: developing ML models to assist developers in writing tests

Task: Test Completion

12

public class GMOperation extends org.im4java.core.GMOperation {

 public GMOperation addImage(final File file) {

 if (file == null) {

 throw new IllegalArgumentException("file must be defined");

 }

 getCmdArgs().add(file.getPath());

 return this;

 }

 ...

}

public class GMOperationTest {

 @Test

 public void addImage_ThrowsException_WhenFileIsNull() throws Exception {

 exception.expect(IllegalArgumentException.class);

 sut.addImage((File) null);

 }

 ...

}

Example from project sharneng/gm4java, GMOperationTest.java

code under test

test signature

prior statements

next statement
...

• Complete one statement at a time

TeCo: ML + Execution for Test Completion

13

• Test completion can greatly benefit from reasoning about execution
• types, program state (local and global), callable methods, etc.
• whether the output is executable

• TeCo uses code semantics as inputs and performs reranking by test execution

Wang et al., CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation. In EMNLP’21.

TeCo
rerank by
execution

code under test

test signature

prior statements

next statementextract execution-guided
code semantics

ML model

• Execution results: program state after executing prior statements

• Execution context: code fragments relevant for predicting next statement

Execution-Guided Code Semantics

14

S1 local var types S2 absent types S3 uninitialized fields

S4 setup teardown S5 last called method S6 similar statement

TeCo
rerank by
execution

code under test

test signature

prior statements

next statementextract execution-guided
code semantics

ML model

public class GMOperation extends org.im4java.core.GMOperation {

... }

public class GMOperationTest {
 GMOperation sut;
 @Before public void setup() { ... sut = new GMOperation(); ... }

... }

Execution-Guided Code Semantics: Example

15

@Test
public void addImage_ThrowsException_WhenFileIsNull() throws Exception {
 exception.expect(IllegalArgumentException.class);
 sut.addImage((File) null);
}

public GMOperation addImage(final File file) {...}

?

S2 absent types
types that are required by the code
under test, but are not available before
executing the next statement

S4 setup teardown
methods executed before/after the test
by the testing framework

CodeT5 prediction new GMOperation().addImage(null);

TeCo prediction sut.addImage((File) null);

compilation error: addImage is overloaded
addImage(File); addImage(Object)

Reranking by Execution

16

• Reranking: prioritize generating compilable and runnable statements

A: p=0.9
B: p=0.8
C: p=0.8
D: p=0.7

B: p=0.8,
compilable+runnable
C: p=0.8, compilable
A: p=0.9, not compilable
D: p=0.7, not compilable

compilable runnable

TeCo
rerank by
execution

code under test

test signature

prior statements

next statementextract execution-guided
code semantics

ML model

Reranking by Execution: Example

17

sut.addImage(null);
sut.addImage((File) null);
...

sut.addImage((File) null);
sut.addImage(null);
...

public class GMOperation extends org.im4java.core.GMOperation {

... }

public class GMOperationTest {
 GMOperation sut;
 @Before public void setup() { ... sut = new GMOperation(); ... }

... }

@Test
public void addImage_ThrowsException_WhenFileIsNull() throws Exception {
 exception.expect(IllegalArgumentException.class);
 sut.addImage((File) null);
}

public GMOperation addImage(final File file) {...}

?

compilable runnable

Evaluation: Dataset

• Developer-written tests from open-source Java projects in
CodeSearchNet
• same dataset and split as used in pre-training CodeT5

• 80% of the evaluation set statements are executable
• computing additional metrics on the executability of the output

statements

18

CodeSearchNet

training evaluation

1206 projects
136K tests

615K statements

64 projects
5K tests

30K statements

extract tests

24K
executable
statements

(80%)

Evaluation: Setup

• Metrics
• syntax-level correctness: exact match accuracy (similarity-based metrics in paper)
• functional correctness: %run, %compile

• Baselines
• Codex: 175B model pre-trained on GitHub (Mar 2023)
• CodeT5: 220M model pre-trained on CodeSearchNet, fine-tuned on our dataset

• Models
• TeCo-noRr: code semantics + CodeT5
• TeCo: code semantics + CodeT5 + reranking by execution

• Configurations
• 4x Nvidia 1080Ti GPUs, Linux
• run each experiment three times with different random seeds

19

Evaluation: Test Completion

Codex
12.7

CodeT5
13.6

TeCo-
noRr
15.3

TeCo
17.6

0

5

10

15

20

ex
ac

t-
m

at
ch

 a
cc

ur
ac

y

20

Codex
19.1 CodeT5

17.6

TeCo-
noRr
19.5

TeCo
28.6

0

10

20

30

%
ru

n Codex
38.8

CodeT5
54.8

TeCo-
noRr
60.8

TeCo
76.2

0

20

40

60

80

%
co

m
pi

le

TeCo improves the accuracy of test completion by 29%, and
is better in generating compilable/runnable test statements

	Slide 1: Software Testing & Machine Learning
	Slide 2: Agenda
	Slide 3: What is Testing and Why
	Slide 4: Regression Testing
	Slide 5: Arrange, Act, Assert
	Slide 6: Differential Testing
	Slide 7: Metamorphic Testing
	Slide 8: Granularities of Testing
	Slide 9: Test {Selection, Minimization, Prioritization}
	Slide 10: Machine Learning for Software Testing
	Slide 11: Motivation: Writing Tests is Tedious
	Slide 12: Task: Test Completion
	Slide 13: TeCo: ML + Execution for Test Completion
	Slide 14: Execution-Guided Code Semantics
	Slide 15: Execution-Guided Code Semantics: Example
	Slide 16: Reranking by Execution
	Slide 17: Reranking by Execution: Example
	Slide 18: Evaluation: Dataset
	Slide 19: Evaluation: Setup
	Slide 20: Evaluation: Test Completion

