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Typically models software problems into logical formulas
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Formal Reasoning for Software Systems

For example: Flight software verification in NASA
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Typically models software problems into logical formulas

Direction 1: Software VerificationRecap
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Logical Formula

Logical Results

Problem Modeling

Logical Reasoning

Software Application

Simplified view: we focus on both analysis layers

Direction 1: Software VerificationRecap



Logical Reasoning
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Maximum 
Satisfiability

Logical Result

Logical Reasoning

In this lecture, we focus on a specific logical reasoning- SAT solving 
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SAT Solving

One of the most fundamental problems in computer science 

The first problem proven to be NP-complete

Many problems in CS can be reduced to SAT

Including software and security problems
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SAT Applications

Many software and security problems can be reduced to SAT



Why Improving SAT Solving is important

Any small improvement can make an essential 
contribution to many applications!
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Software Application

SAT Solving

Logical Formula

Logical Result

Modeling



12

𝜙 = ¬𝑣1 ∨ ¬𝑣2 ∧ 𝑣2 ∨ 𝑣3  ∧ 𝑣2

c1 c2 c3

Input SAT formula: Boolean formula

Literals:¬𝑣1 , v2 , ¬𝑣2 
, 𝑣3 

Clauses: c1, c2 , c3 

Boolean variables: 𝑣1 , v2 , 𝑣3 

CNF formula:
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𝜙 = ¬𝑣1 ∨ ¬𝑣2 ∧ 𝑣2 ∨ 𝑣3  ∧ 𝑣2

SAT 𝑣1 = false 𝑣2 = true 𝑣3 = true UNSAT 

SAT solution

SAT Formula

Satisfiability

𝑣1, 𝑣2, 𝑣3 are Boolean 

SAT Solving

SAT Solving
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SAT Solving

(x5 ∨ ¬x8 ∨ x2) ∧ (x2 ∨ x1 ∨ x3) ∧ (x8 ∨ x3 ∨ x7) ∧ (x5 ∨ x3 ∨ x8) ∧
(x6 ∨ x1 ∨ ¬x5) ∧ (x8 ∨ x9 ∨ x3) ∧ (x2 ∨ ¬x1 ∨ x3)  ∧ (x1 ∨ ¬x8 ∨ x4) ∧
(x9 ∨ x6 ∨ x8) ∧ (x8 ∨ x3 ∨ x9) ∧ (x9 ∨ x3 ∨ x8) ∧ (x6 ∨ x9 ∨ x5) ∧
(x2 ∨ x3 ∨ x8) ∧ (x8 ∨ x6 ∨ x3) ∧ (x8 ∨ ¬x3 ∨ x1) ∧ (x8 ∨ x6 ∨ x2) ∧
(x7 ∨ x9 ∨ ¬x2) ∧ (x8 ∨ x9 ∨ x2) ∧ (x1 ∨ x9 ∨ x4) ∧ (x8 ∨ ¬x1 ∨ x2) ∧
(x3 ∨ ¬x4 ∨ x6)  ∧ (x1 ∨ x7 ∨ x5) ∧ (x7 ∨ x1 ∨ x6) ∧ (x5 ∨ x4 ∨ x6) ∧
(x4 ∨ x9 ∨ x8) ∧ (x2 ∨ ¬x9 ∨ x1) ∧ (x5 ∨ ¬x7 ∨ x1) ∧ (x7 ∨ x9 ∨ x6) ∧
(x2 ∨ x5 ∨ x4)     ∧ (x8 ∨ x4 ∨ x5) ∧ (x5 ∨ x9 ∨ x3) ∧ (x5 ∨ x7 ∨ x9) ∧
(x2 ∨ ¬ x8 ∨ x1) ∧ (x7 ∨ ¬x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x3)    ∧ (x1 ∨ x9 ∨ x4) ∧
(x3 ∨ x5 ∨ x6) ∧ (x6 ∨ x3 ∨ x9) ∧ (x7 ∨ ¬x5 ∨ x9) ∧ (x7 ∨ ¬x5 ∨ x2) ∧
(x4 ∨ ¬x7 ∨ x3) ∧ (x4 ∨ ¬x9 ∨ x7) ∧ (x5 ∨ x1 ∨ x7) ∧ (x5 ∨ x1 ∨ x7) ∧
(x6 ∨ x7 ∨ x3) ∧ (x8 ∨ x6 ∨ x7) ∧ (x6 ∨ x2 ∨ x3) ∧ (x8 ∨ x2 ∨ x5) ….

Does there exist an assignment satisfying all clauses?
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CDCL SAT solving

𝜙 = ¬𝑣1 ∨ ¬𝑣2 ∧ 𝑣2 ∨ 𝑣3  ∧ 𝑣2

SAT 𝑣1 = false 𝑣2 = true 𝑣3 = true UNSAT 

SAT Formula

Satisfiability

CDCL SAT Solving

𝑣1, 𝑣2, 𝑣3 are Boolean 

Currently, the most 
successfully SAT solving
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CDCL SAT solving

CDCL: Conflict Driven Clause Learning

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
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CDCL SAT solving

General Algorithm
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CDCL SAT solving

General Workflow
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CDCL SAT solving

General Workflow
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BCP: Boolean Constraint Propagation

Unit Clause: x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ … ∨ xn

Clause: x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ … ∨ xn

Unit Propagation
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CDCL SAT solving

General Workflow



32

Conflict Analysis-learning a conflict clause

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

Implication 
Graph

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
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Conflict Analysis-learning a conflict clause

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

First unique 
implication point

Second unique 
implication point

UIP: any node 
other than the 
conflict node that 
is on all paths 
from the decision 
node to the 
conflict node 

Dominate the 
conflict nodes

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
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(¬x1 ∨ ¬x3 ∨ x5 ∨ x17 ∨ ¬x19)

tri-asserting clause

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

Approach 1:

Conflict Analysis-learning a conflict clause

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf


35This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19)

first UIP
Approach 2:

Conflict Analysis-learning a conflict clause

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf


36This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

(x2 ∨ ¬x4 ∨ ¬x8 ∨ x17 ∨ ¬x19)

Second UIP
Approach 3:

Conflict Analysis-learning a conflict clause

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf


37This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19)

first UIP

1. Low 
computational 
cost (nearest to 
the conflict node)

2. Backtrack to the 
lowest decision 
level

Conflict Analysis-learning a conflict clause

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
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CDCL SAT solving

General Workflow
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Backtrack using the learned conflict clause

Conflict clause: first_UIP ∨ l1 ∨ l2 ∨ … ∨ ln

Maximum decision level

Backtrack level

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19) Backtrack level: ?
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Backtrack using the learned conflict clause

Conflict clause: first_UIP ∨ l1 ∨ l2 ∨ … ∨ ln

Maximum decision level

Backtrack level

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19) Backtrack level: 5
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Backtrack using the learned conflict clause

Conflict clause: first_UIP ∨ l1 ∨ l2 ∨ … ∨ ln

Maximum decision level

Backtrack level

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19) Backtrack level: 5

Why?
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Backtrack using the learned conflict clause

Conflict clause: first_UIP ∨ l1 ∨ l2 ∨ … ∨ ln

Maximum decision level

Backtrack level

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19) Backtrack level: 5

Because the conflict clause 
can become unit clause

And we can flip the first UIP!
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CDCL SAT solving

General Workflow
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Decision Heuristics

1. Variable selection heuristics
 aim: minimize the search space
 plus: could compensate a bad value selection

2. Value selection heuristics
 aim: guide search towards a solution or conflict
 plus: could compensate a bad variable selection, cache 

solutions of subproblems [PipatsrisawatDarwiche’07]

This slide is adapted from Marijn J.H. Heule’s slides (https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf).

https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
https://www.cs.cmu.edu/~mheule/15816-f20/slides/CDCL.pdf
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CDCL SAT solving

Implementation? 
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Implementation:  Two watched literal Scheme

Introduced by the SAT solver Chaff [1]

[1] Chaff: Engineering an Efficient SAT Solver by Moskewicz, Madigan, Zhao, Zhang, Malik, DAC 2001.

• Remember: Unit propagation fires when all but one literal is 
assigned false 
• Idea: If two variables are either unassigned or assigned true, 
no need to do anything. 
• So just find two variables which satisfy this condition. 
• If can’t find two, do the unit propagate or a conflict is found
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Implementation:  Two watched literal Scheme

Advantages:

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf  

• ZERO cost if a literal not watched.

• ZERO cost on backtrack.

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf
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Implementation:  Two watched literal Scheme

Discussions:

This Slide is adapted from https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf  

• Really come into their own on large clauses 
 • probably not worthwhile on 3-SAT, for example 
 • E.g. if there are 100 variables in clause 
  • it still only needs to watch 2 
  • and 98% of the time the solver will do no work 
  • As if the problem was 98% smaller! 
• We can handle problems with many large clauses 
• benefits the conflict-driven learning 
 • since the learned conflict clauses are often big

https://school.a4cp.org/summer2011/slides/Gent/SATCP3.pdf
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Implementation: Classic CDCL Solver MiniSat

This figure is adapted a figure from [Wang 2016 Dissertation]

Overall Architecture

Learnt conflict clause
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Research in Machine Learning for SAT

One direction: Improving Decision Heuristics

1. Variable selection heuristics
 aim: minimize the search space
 
2. Value selection heuristics
 aim: guide search towards a solution or conflict
 



Improving CDCL SAT Solving using 
Graph Neural Networks

Armin Biere, Nils Froleyks, Wenxi Wang [SAT’23, Tool]

Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, Risto Miikkulainen [ICLR’24]
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Research in Machine Learning for SAT
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Background: GNN

GNN

A type of neural networks
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Background: GNN

A B

B

A

CD

Initial node feature vectors

Operates on graph structured data

GNN
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Background: GNN

A B

B

A

CD

Message passing 
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Background: GNN

A B

B

A

CD

Round 1

Message passing 
– aggregating and transforming node and edge information
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Background: GNN

Message passing 
– aggregating and transforming node and edge information

A B

B

A

CD

Round 1
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Background: GNN

A B

B

A

CD

Message passing 
– aggregating and transforming node and edge information

Round 2
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Background: GNN

A B

B

A

CD

Round 2

Message passing 
– aggregating and transforming node and edge information
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Background: GNN

A B

B

A

CD

Message passing 
– aggregating and transforming node and edge information

Round 3, 4, 5, … 
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Background: GNN

A B

B

A

CD

Message passing 
– aggregating and transforming node and edge information

Round n
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Background: GNN

A B

B

A

CD

A B

B

A

CD

Initial node feature vectors Updated node embeddings

Capture graph structures 
- reason about complex relationships/dependencies

GNN



Improving SAT Solving 73

Related: GNN for SAT
SAT formulas can be naturally converted into graphs 

without information loss

(A∨¬B∨C) ∧ 
(¬A∨D∨E) ∧ 
(B∨¬C∨¬E) ∧ 
(A∨¬D∨¬E) ∧ 
(¬B∨C∨D)
… …  

SAT formula No information loss!
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Related: GNN for SAT

GNN captures complex dependency information of SAT

(A∨¬B∨C) ∧ 
(¬A∨D∨E) ∧ 
(B∨¬C∨¬E) ∧ 
(A∨¬D∨¬E) ∧ 
(¬B∨C∨D)
… …  

SAT formula Graph

GNN

Feature vector

MLInformation loss!

No information loss!
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Related: GNN for SAT

Opens up deep learning for SAT field

SAT

(A∨¬B∨C) ∧ 
(¬A∨D∨E) ∧ 
(B∨¬C∨¬E) ∧ 
(A∨¬D∨¬E) ∧ 
(¬B∨C∨D)
… …  

SAT formula Graph

GNN
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Better efficiency (faster solving)

Broader accessibility (less GPU resource cost)

[Kurin et al. NeurIPS’20]

[Selsam et al. SAT’19]

[Zhang et al. ACL’21]

[Yolcu et al. NeurIPS’19]

[Zhang et al. IJCAI’19]
Frequent Online Inference

Periodic Online Inference

Offline Inference

Our Method
[ICLR’24, SAT’23]

Related: GNN for SAT
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Our Insight

Using offline GNN inference to predict instructive static information

Values of backbone variables
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Variables that have the same value across all possible solutions

𝜙 = ¬𝑣1 ∨ ¬𝑣2 ∧ 𝑣2 ∨ 𝑣3  ∧ 𝑣2

𝑣1 = false 𝑣2 = true  𝑣3 = true 

𝑣1 = false 𝑣2 = true 𝑣3 = false 

All SAT solutions: 

Background: Backbone[Parkes, 1997]

𝒗𝟏 is the negative backbone 𝒗𝟐 is the positive backbone
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Search Space

Pruned Search Space by Backbones

Solution Space

In theory, backbones can enhance SAT!
Satisfiable case: Increase solution-to-search space ratio

Background: Backbone[Parkes, 1997]
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Very expensive to compute backbones!

Challenge on Backbone Computation

In practice, hard to apply backbones to facilitate SAT!
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Our Idea

Very expensive to compute backbones

Using offline GNN inference to predict backbones!



Improving SAT Solving 82

Our Idea: Advantage

Much faster than computing backbones!

Using offline GNN inference to predict backbones
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Our Idea: Challenges

1. How to make accurate predictions?

Using offline GNN inference to predict backbones

2. What if predictions contain a small fraction of errors?
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Our Method: NeuroBack

1. How to make accurate predictions?

Using offline GNN inference to predict backbones

2. What if predictions contain a small fraction of errors?

Training a robust GNN model

Applying predictions cleverly

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]
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Our Method: NeuroBack

Train GNN to predict backbones

Our graph representation

𝝓 = ¬𝒗𝟏 ∨ ¬𝒗𝟐 ∧ 

𝒗𝟐 ∨ 𝒗𝟑  ∧ 

         𝒗2

SAT formula

c1 c2 c3

v1 v2 v3

𝝓

c1

c2

c3

Output graph

c1 c2 c3

v1 v2 v3

𝝓

GNN

Node classification problem

pos-b neg-b non-b

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]
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Our Method: NeuroBack

Backbones

GNN
Train

BackbonesTraining Data

New SAT  Formula

Train GNN to predict backbones offline

Predict
Offline

can be performed solely on CPU!

SAT 
formula

Lightweight and powerful

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]
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Our Method: NeuroBack

Backbones

GNN
Train

Training Data

Training data is the key!

Predict
Offline

SAT 
formula

SAT 
formula

New SAT  Formula

Train a robust GNN to predict backbones accurately

Backbones

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]
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Data Collection

SAT Formulas

Annual 
Competitions

CNFgenSATLIB

Online Benchmark Library SAT Formula Generator

Contain challenging benchmarks 
from real-world applications

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]
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Data Labeling

Backbones

SAT Formulas Training Data

Backbones

Labeling is non-trivial!

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]

Existing backbone computation tools are outdated and inefficient!
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Data Labeling: CaDiBack

Backbones

We developed CaDiBack on top of CadiCaL [Biere et al.] 

CaDiBack 

State-of-the-art!
Extract backbones for 60% more problems 

from past 10 years of SAT competitions

Cutting edge SAT solver

SAT Formulas Training Data

Armin Biere, Nils Froleyks, Wenxi Wang [SAT’23, Tool]

Backbones
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Dataset: DataBack

Backbones

DataBack

First public large dataset in deep learning for SAT!

containing 120,286 data samples

Available online: https://huggingface.co/datasets/neuroback/DataBack
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Our Method: NeuroBack

Backbones

GNN
Train Predict

Offline
SAT 

formula

New SAT  Formula

Backbones

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]

DataBack Robust: achieves 89%  
accuracy on our validation set

Train a robust GNN to predict backbones accurately
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Our Method: NeuroBack

Backbones

GNN
Train SAT

Solver

Initialization

Apply backbone predictions cleverly to facilitate SAT 
Enhance variable value selection heuristic in SAT

Predict
Offline

SAT 
formula

New SAT  Formula

Backbones

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]

DataBack
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Our Method: NeuroBack

Apply backbone predictions cleverly to facilitate SAT 

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]

Enhance variable value selection heuristic in SAT

Selected variable

True False

? ?

Variable value selection heuristic
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Our Method: NeuroBack

Apply backbone predictions cleverly to facilitate SAT 

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]

Enhance variable value selection heuristic in SAT

Selected variable

True False

Value predicted by NeuroBack

Predicted backbone by NeuroBack
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Our Method: NeuroBack

Apply backbone predictions cleverly to facilitate SAT 

Will not hurt correctness!

Predictions are correct Predictions are wrong

Save search time Waste search time

Can benefit from neural predictions even if they contain errors

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]
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Our Method: NeuroBack

Apply backbone predictions cleverly to facilitate SAT 
Goal: make the gain much more than the loss

Predictions are correct

Save search time

Predictions are wrong

Waste search time

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]
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Our Method: NeuroBack

Backbones

GNN
Train

BackbonesDataBack

Kissat

First to enhance Kissat [Biere et al.] using GNN! 

Predict
Offline

Initialization

New SAT  Formula

State-of-the-art SAT solver! Well-engineered, very hard to optimize!

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]
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Results

    SATCOMP-2022          SATCOMP-2023

More Problems Solved:  5.2%          7.4%

Time Saved (per problem):     117 seconds               246 seconds
              (5.0%)                        (10.4%)

The first success in enhancing Kissat using GNN 
in recent SAT competitions

Wang, Hu, Tiwari, Khurshid, McMillan, Miikkulainen [ICLR’24]

Standard Time Limit per problem: 
5,000 seconds
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