
(Auto)Verus

Building Software that You Can Trust

Chenyuan Yang

1

Software correctness is critical

Bad bugs: The worst disasters caused by software fails | New Scientist

https://www.newscientist.com/gallery/software-bugs/

For reliability & security, developers …

Use memory-safe programming languages, such as Rust …

Use formal verification for the core components…

Why Rust?

•Ownership: Every value has a unique "owner."

•Borrowing: You can borrow a value, but there are strict rules.
•One mutable borrow OR multiple immutable borrows.

•Lifetimes: The compiler ensures that references don't outlive the data they point to.

Rust borrow example

fn main() {

 let s1 = String::from("hello");

 // s1's ownership is MOVED to the function

 takes_ownership(s1)

 // This line would cause a compiler error!

 // println!("s1 is {}", s1);

 let s2 = String::from("world");

 // s2 is BORROWED by the function

 borrows_immutably(&s2);

 // s2 is still valid here because it was borrowed

 println!("s2 is still {}", s2);

}

fn takes_ownership(some_string: String) {

 println!("{}", some_string);

} // `some_string` is dropped here

fn borrows_immutably(some_string: &String) {

 println!("{}", some_string);

} // `some_string` is not dropped

For convenience, developers …

Do you currently use AI tools in your development process?

Using AI assistants or coding agents is already the trend!

AI? Reliability & Security?

66.2% Don’t trust the output or answers of AI

How can we trust AI-generated code?

•Software testing
• To expose bugs in code

•Active research in AI for testing and testing for AI

•Software verification
• To mathematically prove important properties of code

• To prove that there is no bug!

But it cannot make sure that there is no bug

Why not formally verify software?

•Can I verify the software itself instead of a model of it?

•Can I not learn a new language to write spec/proof?

•How long does it take the verifier to run?

•How fast is the verified software?

You should try Verus!

•Can I verify the software itself instead of a model of it?

•Can I not learn a new language to write spec/proof?

•How long does it take the verifier to run?

•How fast is the verified software?

“Verus is a tool for verifying the correctness of code written in Rust.
Developers write specifications of what their code should do, and
Verus statically checks that the executable Rust code will always
satisfy the specifications for all possible executions of the code”

•Persistent-memory log, key-value store for Azure Storage
•VeriSMo security module
•Concurrent memory allocator (CMU)
•Atmosphere microkernel (U-Utah)
•Anvil Cluster Management (U-Illinois, U-Wisconsin, VMware)

OSDI Best Paper

OSDI Best Paper

“Verus: A Practical Foundation for Systems Verification”

“Linear Types for Large-Scale Systems Verification”

SOSP Best Artifact

OOPSLA Best Paper

Verus is already used for various systems projects

https://www.andrew.cmu.edu/user/bparno/papers/verus-sys.pdf
https://www.andrew.cmu.edu/user/bparno/papers/verus-sys.pdf
https://www.microsoft.com/en-us/research/publication/linear-types-for-large-scale-systems-verification/
https://www.microsoft.com/en-us/research/publication/linear-types-for-large-scale-systems-verification/
https://www.microsoft.com/en-us/research/publication/linear-types-for-large-scale-systems-verification/

How Verus works?

How Verus works?
 fn binary_search(v: &Vec<u64>, key: u64) -> (ret: usize)
 requires
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| 0 <= i < v@.len() && key == v[i],
 ensures
 ret < v.len(), key == v[ret as int],
 {
 let mut left: usize = 0;
 let mut right: usize = v.len() - 1;
 while left != right

 invariant
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| left <= i <= right && key == v[i],
 {
 let mid = left + (right - left) / 2;
 if v[mid] < key {
 left = mid + 1;
 } else {
 right = mid;
 }
 } …

How should we

describe the

functionality of

binary_search?

Pre-Condition requires
Post-Condition ensures

“The input v is a sorted vector and it

has the value key we want to find”

“The output ret is a valid index i

such that v[i] equals the key”

But …

•Can AI generate Verus specifications and proofs for me?

15

 fn binary_search(v: &Vec<u64>, key: u64) -> (ret: usize)
 requires
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| 0 <= i < v@.len() && key == v[i],
 ensures
 ret < v.len(), key == v[ret as int],
 {
 let mut left: usize = 0;
 let mut right: usize = v.len() - 1;
 while left != right
 {
 let mid = left + (right - left) / 2;
 if v[mid] < key {
 left = mid + 1;
 } else {
 right = mid;
 }
 }
 left
 }

“You are a Verus expert.
Please add proof annotations
for the following code, so that
Verus can prove the function
Implementation satisfies the

function specification.”

??

Can GPT-4 prove binary-search?

16

 fn binary_search(v: &Vec<u64>, key: u64) -> (ret: usize)
 requires
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| 0 <= i < v@.len() && key == v[i],
 ensures
 ret < v.len(), key == v[ret as int],
 {
 let mut left: usize = 0;
 let mut right: usize = v.len() - 1;
 while left != right

 invariant
 exists |i: usize| 0 <= i < v@.len() && key == v[i],
 …
 { … }

 }

Verus error:
mismatched type, expecting `int’ yet getting ̀ usize’

Lack of knowledge: syntax

17

 fn binary_search(v: &Vec<u64>, key: u64) -> (ret: usize)
 requires
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| 0 <= i < v@.len() && key == v[i],
 ensures
 ret < v.len(), key == v[ret as int],
 {
 let mut left: usize = 0;
 let mut right: usize = v.len() - 1;
 while left != right

 invariant
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| left <= i <= right && key == v[i],
 {
 let mid = left + (right - left) / 2;
 if v[mid] < key {
 left = mid + 1;
 } else {
 right = mid;
 }
 } …

Missing invariant:
right < v@.len()

Lack of skills: loop invariants

18

 fn binary_search(v: &Vec<u64>, key: u64) -> (ret: usize)
 requires
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| 0 <= i < v@.len() && key == v[i],
 ensures
 ret < v.len(), key == v[ret as int],
 {
 let mut left: usize = 0;
 let mut right: usize = v.len() - 1;
 while left != right

 invariant
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| left <= i <= right && key == v[i],
 {
 let mid = left + (right - left) / 2;
 if v[mid] < key {
 left = mid + 1;
 } else {
 right = mid;
 }
 } …

Verus error:
1. Function postconditions not satisfied
2. invariant not satisfied at the end of loop
3. Precondition, mid < v@.len(), of v[mid] not satisfied

Missing invariant:
right < v@.len()

Lack of skills: loop invariants

19

 fn binary_search(v: &Vec<u64>, key: u64) -> (ret: usize)
 requires
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| 0 <= i < v@.len() && key == v[i],
 ensures
 ret < v.len(), key == v[ret as int],
 {
 let mut left: usize = 0;
 let mut right: usize = v.len() - 1;
 while left != right

 invariant
 forall |i: int, j: int| 0 <= i < j < v@.len() ==> v[i] <= v[j],
 exists |i: int| left <= i <= right && key == v[i],
 {
 let mid = left + (right - left) / 2;
 if v[mid] < key {
 left = mid + 1;
 } else {
 right = mid;
 }
 } …

Verus error:
1. Function postconditions not satisfied
2. invariant not satisfied at the end of loop
3. Precondition, mid < v@.len(), of v[mid] not satisfied

Lack of strategy: debugging, prioritization, …

data!

20

Not enough

How to teach AI proof knowledge, skills, strategies?

21OurWorldinData.org/artificial-intelligence

The amount of data used to train models

22OurWorldinData.org/artificial-intelligence

The amount of data used to train models

23OurWorldinData.org/artificial-intelligence

Verus
~ 10 projects
~ 100K LoC
~ 500K Token

The amount of Verus data available

AutoVerus:
Automated Proof Generation for Rust Code

An agent framework supporting LLM through prompts, workflow, compiler &
formal methods
OOPSLA 2025

24

How to teach LLMs to write Verus proof?

25

• A workflow that mimics human experts’ methodology

Rust
code

w/ spec
Generation Refinement Debugging

Rust code
w/ spec,

proof

“The proof development of human experts is an iterative process of repeatedly
running Verus, checking and prioritizing Verus errors, developing and editing
proof to fix them.” – Interview of multiple co-authors of the Verus paper

How to teach LLMs to write Verus proof?

26

• A workflow that mimics human experts’ methodology
• An extensible network of GPT agents w/ Verus knowledge, skills

Rust
code

w/ spec
Generation Refinement Debugging

Rust code
w/ spec,

proof

How to teach LLMs to write Verus proof?

27

• A workflow that mimics human experts’ methodology
• An extensible network of GPT agents w/ Verus knowledge, skills
• Proof discipline, ranking, merging, … supported by formal methods

Rust
code

w/ spec
Generation Refinement Debugging

Rust code
w/ spec,

proof + +
+ + +

AutoVerus

28

Generation

Basic loop invariant

Proof w/ inv set 1

Constant Array-Length

Quantifier Conditional

Refinement

Refined
candidate

Debugging
Post-Cond Loop-Inv

Assert-Fail …

Repaired 1

Filter

Rank

Merge

Verus + LynetteRust program with
Specifications

Rust
program

Error
Details

Repaired K

AutoVerus

Proof w/ inv set 2

Proof w/ inv set N

Lack of Discipline

29

• LLM may cheat on the verification
while (i < v.len())
 invariant
 ...
 result.len() <= i,
 ...

{
 ...
}

error: invariant not satisfied after loop

while (i < v.len())
 invariant
 ...
 result.len() <= i,
 ...

{
 ...

assume(result.len() <= i);
}

`assume` makes the verification pass,
but by adding assumption

Lack of Discipline

30

• LLM may change the executable code
while (i < v.len())
{

if (v[i] <= e) {
result.push(v[i]);

}
i = i + 1;

}

while (i < v.len())
{

if (v[i] > e) {
result.push(v[i]);

}
i = i + 1;

}

We need discipline!

31

• We DO want to unleash the creativity of LLM

But

• We do NOT want LLM to make arbitrary changes to the input
• We need an effective way to search among many creative outputs

How to add discipline to LLM?

32

Using Verus + Lynette to
• Rank
• Merge
• Filter
all LLM outputs

The exact ranking/merging/filtering policy is skipped from this talk

33

Discipline - Lynette, the Verus Source Forger
fn remove_all_greater(v: Vec<i32>, i: T)
-> (result: Vec<i32>)
 requires
 forall |k1:int,k2:int|
 0<=k1<k2<v.len() ==> v[k1] != v[k2]
 ensures
 forall |k:int| 0 <= k < result.len()
==>
 result[k] <=
e&&v@.contains(result[k]),
 forall |k:int| 0 <= k < v.len()
 &&
v[k]<=e==>result@.contains(v[k]),
{
let mut i: usize = 0;
let vlen = v.len();
let mut result: Vec<i32> = vec![];
while (i < v.len())
{
if (v[i] <= e) {
result.push(v[i]);

}
i = i + 1;
proof {
assert(...);
...

}
}
result

}

Fn

Sig Body

Ident Out Req Ens Stmt Stmt

While

Stmt Invs

...

If

ProofAssert

34

Discipline - Lynette, the Verus Source Forger

• Detecting "unsafe" changes
• AST-level comparison

• Bottom-line: Generate same executable code
▪ By erasing all ghost code
▪ Then comparing the rest of the code

• Conditional
▪ Spec function
▪ Pre/post condition
▪ Assumption

Expertise – Error-Fix Action Table

35

Error Type

Function postcondition not satisfied

Function precondition not satisfied

Function precondition not satisfied
(Vector Length Violation)

Loop invariant not satisfied at end of loop body

Loop invariant not satisfied before the loop body

Assertion failed

Arithmetic overflow/underflow

Type error

Misc. verus syntax error

…

Expertise – Error-Fix Action Table

36

Error Type Fix Actions
Postcondition not

satisfied
Add the proof blocks related to the post-condition at the exit point

Modify the existing loop invariants

Precondition not satisfied Add the assertions related to the pre-condition just before the invocation of the function

Precondition not satisfied
- Vector Length

add loop invariants/asserts for the array: 1. an invariant that specify the array length (i.e., A.len() ==
...); 2. an invariant about the array index not under bound (e.g., k >= 0)

Invariant not satisfied at
end of loop body add the assertion of the failed loop invariant at the end of the loop

Invariant not satisfied
before loop

Add the assertions related to the failed loop invariant before the loop body
Modify the failed loop invariant to make it correct

Add the failed invariant to all the loops before the failed loop
Delete the failed loop invariant

Assertion failed

Add the necessary assertions before the failed assertion

Add appropriate loop invariants to ensure the assertion holds true

Fix the assertion error for the following code by using existing lemma functions

Fix the assertion error for the following code by creating the helper proof functions

… …

One LLM agent for each fix action

Repair: Post-Condition Not Satisfied

37

Your mission is to fix the post-condition not satisfied error for the following code. Basically,
you should add the proof blocks related to the post-condition at the exit point, or modify the
existing loop invariants to make them work for the post-condition

pub fn filter(x: &Vec<u64>, y: &mut Vec<u64>)
requires

old(y).len() == 0,
ensures

y@ == x@.filter(|k:u64| k%3 == 0),
{

let mut i: usize = 0;
let xlen = x.len();

while (i < xlen)
invariant

i <= xlen,
y@ == x@.take(i as int).filter(|k:u64| k%3 ==

0),
{

if (x[i] % 3 == 0) {
y.push(x[i]);

}
i = i + 1;

}

proof {
assert(y@ == x@.filter(|k:u64| k%3 == 0));

} // Added by AI
}

pub fn filter(x: &Vec<u64>, y: &mut Vec<u64>)
requires

old(y).len() == 0,
ensures

y@ == x@.filter(|k:u64| k%3 == 0),
{

let mut i: usize = 0;
let xlen = x.len();

while (i < xlen)
invariant

i <= xlen,
y@ == x@.take(i as int).filter(|k:u64| k%3 ==

0),
{

if (x[i] % 3 == 0) {
y.push(x[i]);

}
i = i + 1;

}
}

There are two general fixes for the
“post-condition not satisfied” error

Benchmark Construction: Verus-Bench

• No existing Verus proof generation benchmark
• We translated three verification-related benchmark in other

languages (C, Dafny) into Verus
• CloverBench[1], Diffy[2], MBPP[3]

• Misc is collected from Verus tutorials
• The first benchmark designed for Verus proof generation

[1] Sun, Chuyue, et al. "Clover: Clo sed-Loop Ver ifiable Code Generation." International Symposium on AI Verification. Cham: Springer Nature Switzerland, 2024.
[2] Chakraborty, Supratik, Ashutosh Gupta, and Divyesh Unadkat. "Diffy: Inductive reasoning of array programs using difference invariants." , CAV 2021,
[3] Misu, Md Rakib Hossain, et al. "Towards ai-assisted synthesis of verified dafny methods." Proceedings of the ACM on Software Engineering 1.FSE (2024) 39

Results Based on Time and Invocation

40

Much better performance than directly invoking LLMs

Recap

42

• Verus could make sure that AI-generated code is 100% correct!
• Precondition
• Postcondition
• Proof annotation like loop invariants, assertions, etc

• AI could also help you to complete the proof!
• AutoVerus: https://github.com/microsoft/verus-proof-synthesis
• Verus-Copilot: https://github.com/microsoft/verus-copilot-vscode

• VSCode extension

https://github.com/microsoft/verus-proof-synthesis
https://github.com/microsoft/verus-proof-synthesis
https://github.com/microsoft/verus-proof-synthesis
https://github.com/microsoft/verus-proof-synthesis
https://github.com/microsoft/verus-proof-synthesis
https://github.com/microsoft/verus-copilot-vscode
https://github.com/microsoft/verus-copilot-vscode
https://github.com/microsoft/verus-copilot-vscode
https://github.com/microsoft/verus-copilot-vscode
https://github.com/microsoft/verus-copilot-vscode

	Slide 1: (Auto)Verus Building Software that You Can Trust Chenyuan Yang
	Slide 2: Software correctness is critical
	Slide 3: For reliability & security, developers …
	Slide 4: Why Rust?
	Slide 5: Rust borrow example
	Slide 6: For convenience, developers …
	Slide 7: AI? Reliability & Security?
	Slide 8: How can we trust AI-generated code?
	Slide 9: Why not formally verify software?
	Slide 10: You should try Verus!
	Slide 11: Verus is already used for various systems projects
	Slide 12: How Verus works?
	Slide 13: How Verus works?
	Slide 14: But …
	Slide 15: Can GPT-4 prove binary-search?
	Slide 16: Lack of knowledge: syntax
	Slide 17: Lack of skills: loop invariants
	Slide 18: Lack of skills: loop invariants
	Slide 19: Lack of strategy: debugging, prioritization, …
	Slide 20: How to teach AI proof knowledge, skills, strategies?
	Slide 21: The amount of data used to train models
	Slide 22: The amount of data used to train models
	Slide 23: The amount of Verus data available
	Slide 24: AutoVerus: Automated Proof Generation for Rust Code
	Slide 25: How to teach LLMs to write Verus proof?
	Slide 26: How to teach LLMs to write Verus proof?
	Slide 27: How to teach LLMs to write Verus proof?
	Slide 28: AutoVerus
	Slide 29: Lack of Discipline
	Slide 30: Lack of Discipline
	Slide 31: We need discipline!
	Slide 32: How to add discipline to LLM?
	Slide 33: Discipline - Lynette, the Verus Source Forger
	Slide 34: Discipline - Lynette, the Verus Source Forger
	Slide 35: Expertise – Error-Fix Action Table
	Slide 36: Expertise – Error-Fix Action Table
	Slide 37: Repair: Post-Condition Not Satisfied
	Slide 39: Benchmark Construction: Verus-Bench
	Slide 40: Results Based on Time and Invocation
	Slide 41
	Slide 42: Recap

