Can Large Language Models Verify System Software? A Case Study Using FSCQ as a Benchmark.

Jianxing Qin, Alexander Du, Danfeng Zhang, Matthew Lentz, and Danyang Zhuo

Motivation

Challenge: System Software Verification

- Critical infrastructure -> bugs are costly and dangerous
- Formal methods can verify correctness and prove the absence of bugs, but these proofs require substantial manual effort
- LLMs: promising code synthesis and reasoning skills, potential for proof automation

Research Question: Can LLMs replace or augment the manual process of writing proofs for complex system software?

Background Information

File System: A way of organizing and managing data on a disk

FSCQ (File System Certified Quick):

- A formally verified file system whose Coq-based proofs guarantee crash safety.
- Proof goals are tightly coupled with system software behavior.
 - Meets formal specifications of what we expect from it under normal execution and under any sequence of crashes, including crashes during recovery.
- Specifications are written in CHL (Crash Hoare Logic)
 - Extends Hoare-logic style (pre and postconditions) with crash conditions and recovery execution semantics
 - o Embedded in Coq

Crash-Free vs Crash Reasoning

Crash-free Reasoning

Only before & after matter

Reasoning With Crashes

Crashes expose many intermediate states

→ harder to reason about

CHL specification for FSCQ's disk_write

```
SPEC disk_write(a, v)

PRE disk: a \mapsto \langle v_0, vs \rangle \star other\_blocks

POST disk: a \mapsto \langle v, [v_0] \oplus vs \rangle \star other\_blocks

CRASH disk: a \mapsto \langle v_0, vs \rangle \star other\_blocks \vee a \mapsto \langle v, [v_0] \oplus vs \rangle) \star other\_blocks
```

Related Work (Traditional Proof Automation)

Automated Theorem Provers (ATPs):

- Built on logical inference rules and heuristics.
- Automate small reasoning steps to reduce proof burden.

Interactive Theorem Provers: Coq, Isabelle, HOL Light.

- Coq automation tactics: auto and eauto
- SMT solvers:
 - Convert proof goals into satisfiability problems
 - Examples: Dafny, Verus, and F*

Related Work (LLMs)

LLMs for Mathematical Proofs:

- Reframe theorem proving as text generation.
- Incremental production, individual tactics generated and verified
- GPT-f (2019): pioneered tactic prediction; found new shorter proofs (Metamath).
- Polu et al. (2020): improved with expert iteration and proof-size optimization, solved International Mathematical Olympiad (IMO) problems.

LLMs for Verification:

- Selene (seL4): whole-proof generation, context augmentation.
- FVEL: tactic-level, small programs.
- Rango: small finetuned LLM + linear search applied on CompCert.

Contributions

Applies off-the-shelf LLMs with best first tree search on FSCQ codebase.

Compares LLM generated proofs with original manual proofs and analyzes failing cases when LLMs cannot complete a proof.

Methodology (Best First Search for Coq)

Search Algorithm

(1) Selection

- Pick unexpanded goal with highest score.
- Score = cumulative log probability of tactics leading to it.

(2) Expansion

- Query LLM for possible next tactics.
- Each tactic:
 - Valid → completes goal or creates subgoals
 - Invalid → rejected by Coq, duplicate state, or timeout (>5s).

Search succeeds if all goals proven.

Search fails if no unexpanded goals left or query limit exceeded.

```
From Cog Require Import Bool.
                                                                   1 goal
                                                                                                         (1/1)
Lemma orb_true_r :
                                                                   forall a : bool, a || true = true
  forall a : bool, a || true = true.
Proof.
  intros a.
  destruct a.
  simpl. reflexivity.
  simpl. reflexivity.
Qed.
From Cog Require Import Bool.
                                                                  2 goals
                                                                                                         (1/2)
Lemma orb_true_r :
                                                                  true || true = true
  forall a : bool, a || true = true.
                                                                                                         (2/2)
Proof.
                                                                   false || true = true
  intros a.
  destruct a.
  - simpl. reflexivity.
  simpl. reflexivity.
Qed.
From Coq Require Import Bool.
                                                                  All goals completed.
Lemma orb true r :
 forall a : bool, a || true = true.
Proof.
  intros a.
  destruct a.
 - simpl. reflexivity.
 simpl. reflexivity.
Qed.
```


Methodology (Model Choices)

Evaluated four off-the-shelf LLMs:

- GPT-40 mini
- GPT-40
- Gemini 1.5 Flash
- Gemini 1.5 Pro

Tested Gemini 1.5 Pro with two context settings:

- Full 1M-token window.
- Truncated 128k-token window.

All other models use default context limits.

- Context includes definitions, theorem statements, and proof steps in the current file and imported files up to the active proof goal
- Context too long → truncate earlier parts, keep closest tactics.

Methodology

Best-First Search Hyperparameters

- Search width: 8 (limited by Gemini's max outputs per query).
- Query limit: 128

Prompt Design

- Vanilla setting: proof context = only definitions + theorem statements (no proof steps)
- Hypothesis: FSCQ proofs contain repeated structural patterns → hints improve tactic prediction.
- **Hint setting**: adds human proofs for 50% of theorems (randomly chosen, fixed across runs).

Methodology

Data

- Source: theorems from FSCQ codebase.
- For smaller models (GPT-40 mini, Gemini 1.5 Flash): tested on all non-hint theorems.
- For larger models (GPT-4o, Gemini 1.5 Pro): tested on a 10% sample of non-hint theorems (~5% of all FSCQ theorems).

Evaluation Metrics

Proof Coverage

Evaluation (Overall Proof Coverage)

Task: Measure how many FSCQ theorems LLMs can prove.

Results grouped by length of human proofs (in tokens).

Findings:

- Hinted GPT-40 solves 38% of all FSCQ theorems.
- For shorter proofs (<64 tokens) \rightarrow 57% coverage (these make up ~60% of all FSCQ theorems).
- Coverage drops sharply as proofs get longer.
- No model proved theorems >512 tokens.

Evaluation (Hints and Context)

Hints

Supplying human proofs greatly improves coverage

Context

- Gemini 1.5 Pro with 1M tokens vs 128k tokens → no improvement.
 - Suggests that more context ≠ better.
 - o Implies the need for smarter context selection strategies instead of brute-force longer context.

Evaluation (Proof Coverage by Category)

FSCQ proofs split into 3 categories:

- Utilities helper lemmas (general Coq libraries).
- CHL (Crash Hoare Logic) reasoning about crash safety.
- File System lemmas tied to real FS components.

Coverage Analysis:

- Utilities: Model performs better than expected.
- CHL: With hints, solves >50% of CHL lemmas → shows adaptation to custom proof systems.
- File System: Worse than expected, likely due to increase in dependent theorems and custom tactics

Model	Utilities	CHL	File System
GPT-40	40.0% / 36.0%	43.3% / 32.3%	15.6% / 24.4%
GPT-40 (w/ hints)	57.8% / 46.6%	51.7% / 42.2%	20.8% / 32.0%

Reasoning vs. Memorization

Motivation: FSCQ codebase was public → risk that LLMs simply memorized proofs. Approach: Manually compared LLM-generated proofs vs human-written proofs. Finding: Proofs are not duplicates.

- LLMs often produce different strategies.
- Sometimes more concise than human proofs.

Similarity metric: Normalized Levenshtein distance (0 = different, 1 = identical).

- Avg similarity < 0.6, max 0.683.
- Random FSCQ proofs → similarity only 0.360.
- LLMs not memorizing FSCQ proofs.

Proof length:

- LLM proofs ≈ same token length as human proofs.
- LLMs mimic reasonable proof complexity.

[Case A] Comparison for lemma incl_tl_inv: Removing an element from the superset not in the subset preserves the subset relation.

```
Lemma incl_tl_inv : forall T l1 l2 (a : T),
incl 11 (a :: 12) -> ~ In a 11 -> incl 11 12.
           Original -
                                       GPT-4o
induction 11; simpl; intros. | intros T 11 12 a H H0.
apply incl_nil.
                              unfold incl in *.
- intuition.
                              intros x H1.
  apply incl_cons.
                              specialize (H x H1).
  + specialize (H a).
                              simpl in H.
    simpl in *. intuition.
                              destruct H as [H | H].
    exfalso: eauto.
                              exfalso; apply H0;
  + eapply IHl1; eauto.
                                 subst; assumption.

    assumption.

    eapply incl_cons_inv;
                     (70 Tokens) (67 Tokens)
    eauto.
```

[Case B] Comparison for lemma ndata_log_padded_log: The number of entries in a log will not change if padded with NULLs.

```
Lemma ndata_log_padded_log : forall a,
ndata_log (padded_log a) = ndata_log a.
----- Original --
                                              GPT-4o
unfold ndata_log, padded_log,
                                    intros a.
setlen, roundup; intros.
                                    unfold ndata_log.
rewrite firstn oob by auto.
                                    rewrite
                                    nonzero_addrs_padded_log.
repeat rewrite map_app.
                                    reflexivity.
rewrite repeat_map; simpl.
rewrite nonzero_addrs_app.
setoid_rewrite <- app_nil_l at 3.</pre>
rewrite nonzero_addrs_app_zeros;
auto.
                          (78 Tokens) (29 Tokens)
```

[Case C] Comparison for tree name distinct head: Uniqueness of names in a directory implies uniqueness of names in its first sub-directory. Lemma tree_name_distinct_head: **forall** inum name 1 t, tree names distinct (TreeDir inum ((name, t)::1)) -> tree_names_distinct t. Gemini 1.5 Pro Original intros. destruct t. intros. constructor, inversion H. inversion H: rewrite map_cons in H2. auto. apply Forall inv in H2. inversion H2: simpl in H2. inversion H2. subst; auto. constructor; eauto. (55 Tokens) (24 Tokens)

Model	Proved	Failed		Qualitative Metrics	
		Stuck	Fuelout	Similarity	Length
GPT-40 mini	$4.2\% \to 9.1\%$	94.8% → 90.0%	$1.0\% \rightarrow 0.9\%$	$0.460 \to 0.582$	97.4% → 113.7%
GPT-40	$29.2\% \rightarrow 38.1\%$	$65.8\% \rightarrow 57.9\%$	5.0% ightarrow 4.0%	$0.546 \rightarrow 0.605$	$101.6\% \rightarrow 100.7\%$
Gemini 1.5 Flash	$7.1\% \rightarrow 16.3\%$	$91.7\% \rightarrow 81.7\%$	$1.2\% \rightarrow 2.0\%$	$0.529 \to 0.598$	$100.6\% \rightarrow 98.7\%$
Gemini 1.5 Pro	$11.9\% \rightarrow 25.7\%$	$88.1\% \rightarrow 73.3\%$	$0.0\% \rightarrow 1.0\%$	$0.565 \to 0.660$	$98.7\% \rightarrow 92.5\%$
Gemini 1.5 Pro (128k context)	$10.9\% \rightarrow 26.7\%$	89.1% → 72.8%	0.0% o 0.5%	$0.579 \rightarrow 0.683$	111.2% → 109.1%

LLM Failures

Failure modes:

- Stuck = no remaining unexpanded goals (most common).
- Fuelout = query budget exhausted (rare).

Main bottleneck is reasoning ability, not query limits.

Context selection issues:

- Prompts often too long → models fail to pick relevant lemmas.
- Even simple theorems can fail.
- Manually crafted prompts (only essential definitions) let models succeed on short proofs for previously failed theorems (<16 tokens).

Reasoning models:

- Lack of interaction with the proof assistant
- High token usage and long inference times

Limitations and Future Work

- Search and Reasoning Algorithms
 - Monte Carlo Tree Search (MCTS), Chain-of-Thought prompting, Self-Reflection, and reasoning-capable models like o1.
- Off-the-Shelf vs. Fine-Tuned LLMs
 - o Fine-tuning on domain-specific verification data
- LLMs Augmenting Human Proof Effort
 - Partial proof assistance from LLMs
- Improving Context Retrieval
 - More relevant and targeted context
- Constructing intermediate lemmas
- Comparing LLM efficacy across different theorem provers
- Investigate appropriate LLM evaluation methodology