Can Large Language Models Verify

System Software?
A Case Study Using FSCQ as a
Benchmark.

Jianxing Qin, Alexander Du, Danfeng Zhang, Matthew Lentz, and Danyang Zhuo

Motivation

Challenge: System Software Verification

 Critical infrastructure -> bugs are costly and
dangerous

* Formal methods can verify correctness and
prove the absence of bugs, but these proofs
require substantial manual effort

* LLMs: promising code synthesis and
reasoning skills, potential for proof automation

Research Question: Can LLMs replace or
augment the manual process of writing proofs
for complex system software?

Background Information

File System: A way of organizing and managing data on a disk

FSCQ (File System Certified Quick):

« A formally verified file system whose Cog-based proofs guarantee crash
safety.
* Proof goals are tightly coupled with system software behavior.

o Meets formal specifications of what we expect from it under normal
execution and under any sequence of crashes, including crashes during
recovery.

« Specifications are written in CHL (Crash Hoare Logic)

o Extends Hoare-logic style (pre and postconditions) with crash conditions
and recovery execution semantics

o Embedded in Coq

Crash-Free vs Crash Reasoning

Crash-free Reasoning

[Sta rt State: :End State]

Only before & after matter

Reasoning With Crashes

[Sta rt State:

:End State]

Cras|) !Cras|) “Crash 3
Partial [Partial [Partial State

Crashes expose many intermediate states
— harder to reason about

CHL specification for FSCQ's disk_write

SPEC disk_write(a, v)

PRE disk: a — (v, vs) x other_blocks

POST disk: a — (v, [vg]®vs) % other_blocks

CRASH disk: a — (vo, vs) % other_blocks V
a— (v, [vo]®vs)) x other_blocks

Related Work (Traditional Proof Automation)

Automated Theorem Provers (ATPs):
» Built on logical inference rules and heuristics.
« Automate small reasoning steps to reduce proof burden.
Interactive Theorem Provers: Coq, Isabelle, HOL Light.
« Cog automation tactics: auto and eauto
« SMT solvers:
« Convert proof goals into satisfiability problems

 Examples: Dafny, Verus, and F*

Related Work (LLMs)

LLMSs for Mathematical Proofs:
* Reframe theorem proving as text generation.
 Incremental production, individual tactics generated and verified

« GPT-f (2019): pioneered tactic prediction; found new shorter proofs
(Metamath).

* Polu et al. (2020): improved with expert iteration and proof-size
optimization, solved International Mathematical Olympiad
(IMQO) problems.

LLMs for Verification:
« Selene (sel4): whole-proof generation, context augmentation.

« FVEL: tactic-level, small programs.

« Rango: small finetuned LLM + linear search applied on CompCert.

Contributions

Applies off-the-shelf LLMs with
best first tree search on FSCQ
codebase.

Compares LLM generated proofs
with original manual proofs and
analyzes failing cases when LLMs
cannot complete a proof.

Methodology (Best First Search for Coq)

Search Algorithm
(1) Selection
* Pick unexpanded goal with highest score.
« Score = cumulative log probability of tactics leading to it.
(2) Expansion
* Query LLM for possible next tactics.
« Each tactic:
» Valid — completes goal or creates subgoals
* |[nvalid — rejected by Coq, duplicate state, or timeout (>5s).

Search succeeds if all goals proven.
Search fails if no unexpanded goals left or query limit exceeded.

s.a *scratch* r..a FSCQ_Running_Example

From Coq Require Import Bool.

Lemma orb_true_r :

forall a : bool, a || true = true.

Proof.|
intros a.
destruct a.
- simpl. reflexivity.
- simpl. reflexivity.
Qed.

From Coq Require Import Bool.

Lemma orb_true_r :

forall a : bool, a || true
Proof.

intros a.

destruct a.

- simpl. reflexivity.

- simpl. reflexivity.
Qed.

From Coq Require Import Bool.

Lemma orb_true_r :

forall a : bool, a || true = true.

Proof.
intros a.
destruct a.
- simpl. reflexivity.
- simpl. reflexivity.
Qed.

1 goal

forall a : bool, a || true = true

2 goals
true || true = true
false || true = true

All goals completed.

(1/1)

(1/2)

(2/2)

11

Running Example: orb_true_r Proof Tree

Goal:
forall a, a || true = true

<4 e sonu| —

After intros:
a || true = true

Case a=true:
true || true = true

AIX3|JaJ {dL

Case a=false:
false || true = true

AIX3|Jad f|dL

12

Methodology (Model Choices)

Evaluated four off-the-shelf LLMs:
 GPT-40 mini

« GPT-4o0

« Gemini 1.5 Flash

* Gemini 1.5 Pro

Tested Gemini 1.5 Pro with two context settings:

e Full TM-token window.

* Truncated 128k-token window.

All other models use default context limits.

« (Context includes definitions, theorem statements, and proof steps in

the current file and imported files up to the active proof goal
« (Context too long — truncate earlier parts, keep closest tactics.

13

Methodology

Best-First Search Hyperparameters
« Search width: 8 (limited by Gemini's max outputs per query).

* Query limit: 128
Prompt Design

 Vanilla setting: proof context = only definitions + theorem statements (no
proof steps)

 Hypothesis: FSCQ proofs contain repeated structural patterns — hints
Improve tactic prediction.

* Hint setting: adds human proofs for 50% of theorems (randomly chosen,
fixed across runs).

14

Methodology

Data
e Source: theorems from FSCQ codebase.

e For smaller models (GPT-4o0 mini, Gemini 1.5 Flash): tested on all non-hint
theorems.

* For larger models (GPT-40, Gemini 1.5 Pro): tested on a 10% sample of

non-hint theorems (~5% of all FSCQ theorems).

Evaluation Metrics
* Proof Coverage

16

Evaluation (Overall Proof Coverage)

Task: Measure how many FSCQ theorems LLMs can prove.
Results grouped by length of human proofs (in tokens).
Findings:

» Hinted GPT-40 solves 38% of all FSCQ theorems.

* For shorter proofs (<64 tokens) — 57% coverage (these make up ~60% of
all FSCQ theorems).

« Coverage drops sharply as proofs get longer.

 No model proved theorems >512 tokens.

16

Evaluation (Hints and Context)

Hints
« Supplying human proofs greatly improves coverage

Context
 Gemini 1.5 Pro with 1M tokens vs 128k tokens — no improvement.

o Suggests that more context # better.
o Implies the need for smarter context selection strategies instead of

brute-force longer context.

112

Fraction of theorems
] F =9 (o)] co
o o o]
X RN RN R

2

GPT-40 mini

mm GPT-40 mini (w/ hints)
Gemini 1.5 Flash

B Gemini 1.5 Flash (w/ hints)

0%°
100% 10% 19% 32% 22% 11%

total 8-15 16-31 32-63 64-127 128-255

256-511 512-1023 1024-2047
3% 2% 1%

Human Proof Length (Range of # Tokens) and Fraction of Test Set (%)

(a) Using Small LLMs (GPT-40 mini, Gemini 1.5 Flash) on 50% of the FSCQ codebase.

., 100%
£ 12 I GPT-40
S 80% 10 " GPT-40 (w/ hints)
O 999 .
< 60% 91 22 22 Gemini 1.5 Pro
dci} 20 Gemini 1.5 Pro (w/ hints)
c 40% 77 === Gemini 1.5 Pro (128k context)
o 59 52 54 100 10 19 16 16 - .
-E 20% 99 B Gemini 1.5 Pro (128k context, w/ hints)
© © 24 22 a4 5 1
T 403 N
[+]
0% total 8-15 16-31 32-63 64-127 1287255 256-511 512-1023 1024-2047
100% 7% 19% 33% 25% 10% 5% 1% 0%

Human Proof Length (Range of # Tokens) and Fraction of Test Set (%)

(b) Using Large LLMs (GPT-40, Gemini 1.5 Pro) on 5% of the FSCQ codebase.

17

18

Evaluation (Proof Coverage by Category)

FSCQ proofs split into 3 categories:

« Utilities — helper lemmas (general Coq libraries).

 CHL (Crash Hoare Logic) — reasoning about crash safety.
« File System —lemmas tied to real FS components.

Coverage Analysis:

« Utilities: Model performs better than expected.

« CHL: With hints, solves >50% of CHL lemmas — shows adaptation to custom
proof systems.

* File System: Worse than expected, likely due to increase in dependent theorems

and custom tactics

Model Utilities CHL File System

GPT-40 40.0% / 36.0% 43.3%/32.3% 15.6% / 24.4%
GPT-40 (w/ hints) 57.8%/46.6% 51.7%/42.2% 20.8% / 32.0%

19

Reasoning vs. Memorization

Motivation: FSCQ codebase was public — risk that LLMs simply memorized proofs.
Approach: Manually compared LLM-generated proofs vs human-written proofs.
Finding: Proofs are not duplicates.

 |LLMs often produce different strategies.

« Sometimes more concise than human proofs.

Similarity metric: Normalized Levenshtein distance (0 = different, 1 = identical).
« Avg similarity < 0.6, max 0.683.

 Random FSCQ proofs — similarity only 0.360.

* LLMs not memorizing FSCQ proofs.

Proof length:
 LLM proofs = same token length as human proofs.
 LLMs mimic reasonable proof complexity.

20

[Case A] Comparison for lemma incl_tl_inv: Removing an element
from the superset not in the subset preserves the subset relation.

Lemma incl_tl_inv : forall T

11 12 (a : T),

incl 11 (a :: 12) -> ~ In a 11 -> incl 11 12.

induction 11; simpl; intros.
- apply incl_nil.
- intuition.
apply incl_cons.
+ specialize (H a).
simpl in *. intuition.
exfalso; eauto.
+ eapply IH11; eauto.
eapply incl_cons_inv;

intros T 11 12 a H He.

unfold incl in *.

intros x H1.

specialize (H x H1).

simpl in H.

destruct H as [H | H].

- exfalso; apply HO;
subst; assumption.

- assumption.

eauto. (70 Tokens)

(67 Tokens)

[Case B] Comparison for lemma ndata_log_padded_log: The number of
entries in a log will not change if padded with NULLs.

Lemma ndata_log_padded_log : forall a,
ndata_log (padded_log a) = ndata_log a.

unfold ndata_log, padded_log,
setlen, roundup; intros.

rewrite firstn_oob by auto.
repeat rewrite map_app.

rewrite repeat_map; simpl.
rewrite nonzero_addrs_app.
setoid_rewrite <- app_nil_1 at 3.
rewrite nonzero_addrs_app_zeros;
auto.

intros a.

unfold ndata_log.

rewrite
nonzero_addrs_padded_log.
reflexivity.

(78 Tokens)

(29 Tokens)

[Case C] Comparison for tree_name_distinct_head:
Uniqueness of names in a directory implies
uniqueness of names in its first sub-directory.

Lemma tree_name_distinct_head:

forall inum name 1 t, tree_names_distinct
(TreeDixr inum ((name, t)::1)) ->
tree_names_distinct t.

—--—=--{ Original }-------~-[Gommii5Pe}

intros. destruct t. intros.
constructor. inversion H. inversion H;
rewrite map_cons in H2. auto.

apply Forall_inv in H2. inversion H2;
simpl in H2. inversion H2. | subst; auto.
constructor; eauto.

(55 Tokens)|(24 Tokens)

21

Failed Qualitative Metrics
Model Proved R et L L LTS
Stuck Fuelout Similarity Length
GPT-40 mini 4.2% — 9.1% 94.8% — 90.0% 1.0% — 0.9% | 0.460 — 0.582 97.4% — 113.7%
GPT-40 29.2% — 38.1% 65.8% — 57.9% 5.0% — 4.0% | 0.546 — 0.605 101.6% — 100.7%
Gemini 1.5 Flash 7.1% — 16.3% 91.7% — 81.7% 1.2% — 2.0% | 0.529 — 0.598 100.6% — 98.7%
Gemini 1.5 Pro 11.9% — 25.7% 88.1% — 73.3% 0.0% — 1.0% | 0.565 — 0.660 98.7% — 92.5%
Gemini 1.5 Pro (128k context) 10.9% — 26.7% 89.1% — 72.8% 0.0% — 0.5% | 0.579 — 0.683 111.2% — 109.1%

22

LLM Failures

Failure modes:

Stuck = no remaining unexpanded goals (most common).
Fuelout = query budget exhausted (rare).

Main bottleneck is reasoning ability, not query Iimits.

Context selection issues:

Prompts often too long — models fail to pick relevant lemmas.

Even simple theorems can fail.

Manually crafted prompts (only essential definitions) let models succeed on
short proofs for previously failed theorems (<16 tokens).

Reasoning models:

Lack of interaction with the proof assistant
High token usage and long inference times

23

Limitations and Future Work

Search and Reasoning Algorithms
o Monte Carlo Tree Search (MCTS), Chain-of-Thought prompting, Self-Reflection,
and reasoning-capable models like o1.
Off-the-Shelf vs. Fine-Tuned LLMs
o Fine-tuning on domain-specific verification data
LLMs Augmenting Human Proof Effort
o Partial proof assistance from LLMs
Improving Context Retrieval
o More relevant and targeted context
Constructing intermediate lemmas
Comparing LLM efficacy across different theorem provers
Investigate appropriate LLM evaluation methodology

	Slide 1: Can Large Language Models Verify System Software? A Case Study Using FSCQ as a Benchmark. Jianxing Qin, Alexander Du, Danfeng Zhang, Matthew Lentz, and Danyang Zhuo
	Slide 2: Motivation
	Slide 3: Background Information
	Slide 4
	Slide 5
	Slide 6: Related Work (Traditional Proof Automation)
	Slide 7: Related Work (LLMs)
	Slide 8: Contributions
	Slide 9: Methodology (Best First Search for Coq)
	Slide 10
	Slide 11
	Slide 12: Methodology (Model Choices)
	Slide 13: Methodology
	Slide 14: Methodology
	Slide 15: Evaluation (Overall Proof Coverage)
	Slide 16: Evaluation (Hints and Context)
	Slide 17
	Slide 18: Evaluation (Proof Coverage by Category)
	Slide 19: Reasoning vs. Memorization
	Slide 20
	Slide 21
	Slide 22: LLM Failures
	Slide 23: Limitations and Future Work

