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Motivation

Challenge: System Software Verification

• Critical infrastructure -> bugs are costly and 
dangerous

• Formal methods can verify correctness and 
prove the absence of bugs, but these proofs 
require substantial manual effort

• LLMs: promising code synthesis and 
reasoning skills, potential for proof automation

Research Question: Can LLMs replace or 
augment the manual process of writing proofs 
for complex system software? 
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Background Information

File System: A way of organizing and managing data on a disk

FSCQ (File System Certified Quick):

• A formally verified file system whose Coq-based proofs guarantee crash 

safety.

• Proof goals are tightly coupled with system software behavior.

o Meets formal specifications of what we expect from it under normal 

execution and under any sequence of crashes, including crashes during 

recovery.

• Specifications are written in CHL (Crash Hoare Logic)

o Extends Hoare-logic style (pre and postconditions) with crash conditions 

and recovery execution semantics

o Embedded in Coq
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CHL specification for FSCQ’s disk_write



Related Work (Traditional Proof Automation)
Automated  Theorem Provers (ATPs):

• Built on logical inference rules and heuristics.

• Automate small reasoning steps to reduce proof burden.

Interactive Theorem Provers: Coq, Isabelle, HOL Light.

• Coq automation tactics: auto and eauto

• SMT solvers:

• Convert proof goals into satisfiability problems

• Examples: Dafny, Verus, and F*
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Related Work (LLMs)
LLMs for Mathematical Proofs:

• Reframe theorem proving as text generation.

• Incremental production, individual tactics generated and verified

• GPT-f (2019): pioneered tactic prediction; found new shorter proofs 
(Metamath).

• Polu et al. (2020): improved with expert iteration and proof-size 
optimization, solved International Mathematical Olympiad 
(IMO) problems.

LLMs for Verification:
• Selene (seL4): whole-proof generation, context augmentation.

• FVEL: tactic-level, small programs.

• Rango: small finetuned LLM + linear search applied on CompCert.
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Contributions
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Applies off-the-shelf LLMs with 
best first tree search on FSCQ 
codebase.

Compares LLM generated proofs 
with original manual proofs and 
analyzes failing cases when LLMs 
cannot complete a proof.



Methodology  (Best First Search for Coq)

Search Algorithm

(1) Selection

• Pick unexpanded goal with highest score.

• Score = cumulative log probability of tactics leading to it.

(2) Expansion

• Query LLM for possible next tactics.

• Each tactic:

• Valid → completes goal or creates subgoals

• Invalid → rejected by Coq, duplicate state, or timeout (>5s).

Search succeeds if all goals proven.

Search fails if no unexpanded goals left or query limit exceeded.
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Methodology  (Model Choices)

Evaluated four off-the-shelf LLMs:

• GPT-4o mini

• GPT-4o

• Gemini 1.5 Flash

• Gemini 1.5 Pro

Tested Gemini 1.5 Pro with two context settings:

• Full 1M-token window.

• Truncated 128k-token window.

All other models use default context limits.

• Context includes definitions, theorem statements, and proof steps in 

the current file and imported files up to the active proof goal

• Context too long → truncate earlier parts, keep closest tactics.
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Methodology

Best-First Search Hyperparameters

• Search width: 8 (limited by Gemini’s max outputs per query).

• Query limit: 128

Prompt Design

• Vanilla setting: proof context = only definitions + theorem statements (no 

proof steps)

• Hypothesis: FSCQ proofs contain repeated structural patterns → hints 

improve tactic prediction.

• Hint setting: adds human proofs for 50% of theorems (randomly chosen, 

fixed across runs).
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Methodology

Data

• Source: theorems from FSCQ codebase.

• For smaller models (GPT-4o mini, Gemini 1.5 Flash): tested on all non-hint 

theorems.

• For larger models (GPT-4o, Gemini 1.5 Pro): tested on a 10% sample of 

non-hint theorems (~5% of all FSCQ theorems).

Evaluation Metrics

• Proof Coverage
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Evaluation (Overall Proof Coverage)

Task: Measure how many FSCQ theorems LLMs can prove.

Results grouped by length of human proofs (in tokens).

Findings:

• Hinted GPT-4o solves 38% of all FSCQ theorems.

• For shorter proofs (<64 tokens) → 57% coverage (these make up ~60% of 

all FSCQ theorems).

• Coverage drops sharply as proofs get longer.

• No model proved theorems >512 tokens.
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Evaluation (Hints and Context)

Hints

• Supplying human proofs greatly improves coverage

Context

• Gemini 1.5 Pro with 1M tokens vs 128k tokens → no improvement.

o Suggests that more context ≠ better.

o Implies the need for smarter context selection strategies instead of 

brute-force longer context.
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Evaluation (Proof Coverage by Category)

FSCQ proofs split into 3 categories:

• Utilities – helper lemmas (general Coq libraries).

• CHL (Crash Hoare Logic) – reasoning about crash safety.

• File System – lemmas tied to real FS components.

Coverage Analysis:

• Utilities: Model performs better than expected.

• CHL: With hints, solves >50% of CHL lemmas → shows adaptation to custom 

proof systems.

• File System: Worse than expected, likely due to increase in dependent theorems 

and custom tactics
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Reasoning vs. Memorization

Motivation: FSCQ codebase was public → risk that LLMs simply memorized proofs.

Approach: Manually compared LLM-generated proofs vs human-written proofs.

Finding: Proofs are not duplicates.

• LLMs often produce different strategies.

• Sometimes more concise than human proofs.

Similarity metric: Normalized Levenshtein distance (0 = different, 1 = identical).

• Avg similarity < 0.6, max 0.683.

• Random FSCQ proofs → similarity only 0.360.

• LLMs not memorizing FSCQ proofs.

Proof length:

• LLM proofs ≈ same token length as human proofs.

• LLMs mimic reasonable proof complexity.
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LLM Failures

Failure modes:

• Stuck = no remaining unexpanded goals (most common).

• Fuelout = query budget exhausted (rare).

Main bottleneck is reasoning ability, not query limits.

Context selection issues:

• Prompts often too long → models fail to pick relevant lemmas.

• Even simple theorems can fail.

• Manually crafted prompts (only essential definitions) let models succeed on 

short proofs for previously failed theorems (<16 tokens).

Reasoning models:

• Lack of interaction with the proof assistant

• High token usage and long inference times
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Limitations and Future Work

• Search and Reasoning Algorithms

o Monte Carlo Tree Search (MCTS), Chain-of-Thought prompting, Self-Reflection, 

and reasoning-capable models like o1.

• Off-the-Shelf vs. Fine-Tuned LLMs

o Fine-tuning on domain-specific verification data 

• LLMs Augmenting Human Proof Effort

o Partial proof assistance from LLMs

• Improving Context Retrieval

o More relevant and targeted context

• Constructing intermediate lemmas

• Comparing LLM efficacy across different theorem provers

• Investigate appropriate LLM evaluation methodology
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