Presenter: Dimas Parikesit (vgx2dc)

KNighter: Transforming Static Analysis with
LLM-Synthesized Checkers

Chenyuan Yang Zijie Zhao Zichen Xie
University of Illinois at University of Illinois at Zhejiang University
Urbana-Champaign Urbana-Champaign China
USA USA xiezichen@zju.edu.cn
cy54@illinois.edu zijied@illinois.edu

Haoyu Li Lingming Zhang
Shanghai Jiao Tong University University of Illinois at
China Urbana-Champaign
learjet@sjtu.edu.cn USA
lingming@illinois.edu

Current state of Static Analysis Checker

I N
! Human | O [Checker
X i _teaming 1o i
| Automated - E)-ir-ec-:t- o |
— I 1
\/[Learning]Q: Scan :Q X Q

Various Ve - 4 Large
Bug Emerging LLM-Based Static Analysis Codebase

Patterns A 7 — Scan
utomate ecker
v [Learning]@ v

LLM-Synthesized Checkers

Traditional Static Analysis

e Clang Static Analyzer (CSA) has a set of handmade checkers

1. Available Checkers
The analyzer performs checks that are categorized into families or “checkers”. / / C

The default set of checkers covers a variety of checks targeted at finding security and APl usage b

Checkers checkers list below. VO id t e S t (in t *p) {

-
In addition to these, the analyzer contains a number of Experimental Checkers (aka alpha checkers). 1f (! p)
off by default. They may crash or emit a higher number of false positives.
*p = @; // warn

The debug package contains checkers for analyzer developers for debugging purposes. }

Table of Contents

Available Checkers
Default Checkers

P https://clang.llvm.org/docs/analyzer/

core.CallAndMessage (C, C++, ObjC)

core.DivideZero (C, C++, ObjC) h k ht |
core.FixedAddressDereference (C, C++, ObjC) C e C e rS - m
core.NonNullParamChecker (C, C++, ObjC)

core.NullDereference (C, C++, ObjC)

core.StackAddressEscape (C)

core.UndefinedBinaryOperatorResult (C)

core.VLASize (C)

core.uninitialized.ArraySubscript (C)

core.uninitialized.Assign (C)

core.uninitialized.Branch (C)

core.uninitialized.CapturedBlockVariable (C)

core.uninitialized.UndefReturn (C)

core.uninitialized.NewArraySize (C++)

Traditional Static Analysis

e Clang Static Analyzer (CSA) has a set of handmade checkers
e CSA can check the entire program
e But it lacks domain knowledge (such as which functions may return null?)

Traditional Static Analysis

e Clang Static Analyzer (CSA) has a set of handmade checkers
e CSA can check the entire program
e But it lacks domain knowledge (such as which functions may return null?)

| Linux Plumbers Conference | september 12:14. 2022 8 A
Why is devm_kzalloc() harmful and

what can we do about it
Laurent Pinchart - Ideas on Boara \

ARG N

Linux
Plumbers

Conference 2022 Use-after-free

>> Dublin, Ireland / September 12-14, 2022

A typical conversion to devm_* helpers doesn’t conceptually introduce bugs,
because the bugs have been there all along. If a resource is freed at remove time
(ak.a. detach, ak.a. disconnect, ak.a. unbind), a use-after-free may occur as
consumers may hold references.

Producer O”QC = Lreglster
register & free

Consumer { acquire J [use] [release]

A J \ 7 N 4

= Y% Y o
\OREO probe() remove() use-after-free

Traditional Static Analysis

Clang Static Analyzer (CSA) has a set of handmade checkers

CSA can check the entire program

But it lacks domain knowledge (such as which functions may return null?)

e a/drivers/spi/spi-pcilxxxx.c
+++ b/drivers/spi/spi-pcilxxxx.c
@@ -275,6 +275,8 @@ static int pcilxxxx_spi_probe
spi_bus->spi_int[iter] = devm_kzalloc(&pdev->dev, ...);
+ if (!spi_bus->spi_int[iter])
+ return -ENOMEM;
spi_sub_ptr = spi_bus->spi_int[iter];
_ spi_sub_ptr->spi_host = devm_spi_alloc_host(...))

(a) Patch for a Null-Pointer-Dereference bug. The pointer re-
turned by devm_kzalloc should be checked.

e N\
int asoc_qcom_lpass_cpu_platform_probe(...)
{
drvdata = devm_kzalloc(dev, ...);
+ if (!drvdata)
+ return -ENoMeM; Patch

““irvdata->variant = variant; ! Without NULL checking

\ J

(b) A new bug detected by KNighter with CVE-2024-50103.

LLM-Based Automated Scan

e LLM can learn domain specific knowledge
(such as devm_kzalloc may return null)

e But directly using LLM to scan the entire codebase is impossible because
of limited context window

Current state of Static Analysis

(T T T T T T N
' Human |, @O | Checker .
x|y 18| S B2 v

o
— Automated 1 Direct |
|_.\/ [Learning]Q: Scan :Q X Q

Various Ve - 4 Large
Bug Emerging LLM-Based Static Analysis Codebase

Patterns Scan
% Automated Q Checker
Learning Design
\ KNighter

LLM-Synthesized Checkers

How to combine ease-of-use of LLM with the
scalability of traditional static analysis?

KNighter

KNighter

Automatically synthesize CSA checker from a patch commit

11

KNighter

Automatically synthesize CSA checker from a patch commit

S Synthesis

Input Patch

A potential null pointer
that may be caused by a
failed memory allocation
by the function devm_kzalloc

+ if (!spi_bus->spi_int)
+ return -ENOMEM

drivers/spi/spi-pcilxxxx.o

The bug pattern is the
failure to check the

return value of

—

“devm_kzalloc()"' for
NULL before
dereferencing it.

L @ Pattern Analysis

Plan

1. Program State Management

2. Callback Functions
- ‘checkPostCall®: Track
Memory Allocations

—

@ Plan Synthesis

—

void checkPostCall(...);
void
checkBranchCondition(...);
void checkLocation(...);
void checkBind(...);

@Checker Generation

spi_bus->spi_int = devm_xx

spi_bus->spi_int[0] = ..
1 B3
-

spi_bus->spi_int = devm_xx
+ if (!spi_bus->spi_int)

+ return -ENOMEM — F‘Jf‘ ‘Optional’ was not

spi_bus->spi_int[0] = ..

% Checker Validation

v

Syntax Error:

declared in this scope

@ Checker Repair

void checkPostCall(...);

void

checkBranchCondition(...);

void checkLocation(...);

void checkBind(...); r

Plausible Checkers

=Q

<’ 2cod

ebase Scan

- Decision: {Bug/NotABug}
3 - Reason: {...}

@aReport Triage

>

void checkPostCall(...);

void checkBranchCondition(...);
void checkLocation(...);

void checkBind(...);

@ Checker Refinement

Refinement ,,

Checker Synthesis

(1) Pattern Analysis

e Extract targeted bug patterns derived from the patch context.
e Abug pattern is the root cause of this bug, meaning that programs with this
pattern will have a great possibility of having the same bug.

14

(1) Pattern Analysis

e These patterns are pre-determined

Bug Type

NPD
Integer-Overflow
Out-of-Bound
Buffer-Overflow
Memory-Leak
Use-After-Free
Double-Free

UBI
Concurrency
Misuse

(1) Pattern Analysis
Input Patch

A potential null pointer
that may be caused by a
failed memory allocation
by the function devm_kzalloc

+ if (!spi_bus->spi_int)
+ return -ENOMEM

drivers/spi/spi-pcilxxxx.o

spi: mchp-pcilxxx: Fix a possible null pointer dereference in
pcilxxx_spi_probe

In function pcilxxxx_spi_probe, there is a potential null
pointer that may be caused by a failed memory allocation

by the function devm_kzalloc. Hence, a null pointer check
needs to be added to prevent null pointer dereferencing
later in the code.

To fix this issue, spi_bus->spi_int[iter] should be checked.
The memory allocated by devm_kzalloc will be automatically
\»released, so just directly return -ENOMEM.

Expanded
functions

The bug pattern is the
failure to check the
return value of
‘devm_kzalloc()® for
NULL before
dereferencing it.

Pattern Analysis

Examples

16

(1) Pattern Anal

ySis

-

k{{input_patch}} , Diff patch I

Instruction

You will be provided with a patch in Linux kernel.

Please analyze the patch and find out the **bug pattern*x in
this patch.

A **xbug patternx* is the root cause of this bug, meaning that
programs with this pattern will have a great possibility of
having the same bug.

Note that the bug pattern should be specific and accurate,
which can be used to identify the buggy code provided in the
patch.

Examples S e - 3
I Commit message P

. I oo
Target Patch : Buggy code I :l: 9' °‘°
>

(a) Prompt template for bug pattern analysis

17

(2) Plan Synthesis

e Generates a high-level plan for implementing the static analysis checker

e Goal:
o Provides structured guidance to the LLMs during the actual checker generation to prevent
confusion

o Facilitates debugging of the entire pipeline by making the LLMs’ reasoning process
transparent and traceable

The bug pattern is the ## Plan
failure to check the 1. Program State Management
return value of 2. Callback Functions

1 ‘devm_kzalloc()"* for - ‘checkPostCall’: Track
NULL before Memory Allocations

dereferencing it.

gaPattern Analysis gaPlan Synthesis

18

-

(2) Plan Synthesis: Prompt

-

Instruction

Please organize a elaborate plan to help to write a CSA
checker to detect such **bug patternxx.

Utility Functions

Examples
Target Patch

{{input_patch}} %
Target Pattern oo 9' or)
{{input_pattern}} un) b 4

‘/

(b) Prompt template for plan synthesis.

19

(3) Checker Generation

Generate CSA checker based on the plan

Plan
1. Program State Management
2. Callback Functions

- ‘checkPostCall': Track
Memory Allocations

gaPlan Synthesis

(V{(Customize Program States}} // If necessary
namespace {
class NewChecker : public Checker<{{Callback Functions}}> {
mutable std::unique_ptr<BugType> BT;
public:
NewChecker() : BT(new BugType(this, "{{Bug desc}}")) {3
{{Declaration of Callback Functions}}
private:
{{Declaration of Self-Defined Functions}}

{{Self-Defined Functions (should be complete and runnable)}}

\}

Figure 6. Pre-defined checker template for CSA.

ﬂoid checkPostCall(...) const { \

if (!ExprHasName(OriginExpr, "devm_kzalloc", C))
return;
State = State->set<PossibleNullPtrMap>(MR, false);
}

void checkBranchCondition(...) const {
// Pattern 1: if (!ptr)
if (const UnaryOperator *UO =
dyn_cast<UnaryOperator>(CondExpr)) {
if (U0->getOpcode() == UO_LNot) {

State = markRegionChecked(State, MR);
i}
3
// Pattern 2: if (ptr == NULL) or if (ptr != NULL)

) i

void checkLocation(...) const {

// Look up the region in the PossibleNullPtrMap.
const bool *Checked = State->get<PossibleNullPtrMap>(MR);
// If the region is recorded as unchecked, warn.
if (Checked && *Checked == false)
reportUncheckedDereference(MR, S, C);
}
void checkBind(...) const {

// For pointer assignments, update the aliasing map.
State = State->set<PtrAliasMap>(LHSReg, RHSReg);
State = State->set<PtrAliasMap>(RHSReg, LHSReg);

\J /

(c) A checker synthesized by KNighter for the patch in Fig. 2a.

20

(4) Checker Repair

e Any LLM-generated code might be broken
e Use an LLM debugging agent to fix syntax error by automatically
processes compiler error messages and applies necessary fixes

21

(4) Checker Repair

e Any LLM-generated code might be broken
e Use an LLM debugging agent to fix syntax error by automatically
processes compiler error messages and applies necessary fixes

Instruction

The following checker fails to compile, and your task is to resolve the compilation error based on the provided error messages.
Here are some potential ways to fix the issue:
1. Use the correct API: The current APl may not exist, or the class has no such member. Replace it with an appropriate one.
2. Use correct arguments: Ensure the arguments passed to the API have the correct types and the correct number.
3. Change the variable types: Adjust the types of some variables based on the error messages.

4. Be careful if you want to include a header file. Please make sure the header file exists. For instance "fatal error: clang/StaticAnalyzer/
Core/PathDiagnostic.h: No such file or directory".

The version of Clang environment is Clang-18. You should consider the APl compatibility.

Please only repair the failed parts and keep the original semantics. Please return the whole checker code after fixing the compilation
error.

22

(5) Checker Validation

e Mitigate LLM inaccuracies

23

(5) Checker Validation |

Check against
buggy version

e Mitigate LLM inaccuracies
e Scoped to only the files modified by the patch

an it confirm the

no-
resence of bug?

yes

v

Check against
fixed version

no

\ 4

Checker is valid Checker is invalid 24

Checker Refinement

How to prevent potential false positive?

Run checkers on the entire program
For all reported potential bugs

(@)

(@)

Input Patch

A potential null pointer
that may be caused by a
failed memory allocation
by the function devm_kzalloc

+ if (!spi_bus->spi_int)
+ return -ENOMEM

drivers/spi/spi-pcilxxxx.o

The bug pattern is the
failure to check the
return value of
devm_kzalloc()" for
NULL before
dereferencing it.

@ Pattern Analysis

—>

Plan
1. Program State Management
2. Callback Functions

- ‘checkPostCall': Track
Memory Allocations

=

@ Plan Synthesis

Evaluate the generated bug report to identify the false positives
Use the identified false positives back to refine the checker

void checkPostCall(...);
void
checkBranchCondition(...);

=——>» void checkLocation(...);
void checkBind(...);

@aChecker Generation

spi_bus->spi_int = devm_xx

spi_bus->spi_int[e] = ..
T (X

spi_bus->spi_int = devm_xx
+ if (!spi_bus->spi_int)

+ return -ENOMEM ‘

spi_bus->spi_int[0] =

% Checker Validation

N

y

- Syntax Error:
F"‘.’.," ‘Optional’ was not

declared in this scope

@Checker Repair

void checkPostCall(...);

void

checkBranchCondition(...);

void checkLocation(...); .
void checkBind(...);]

Plausible Checkers

>

4 :6) ¥ Codebase Scan

- Decision: {Bug/NotABug}

void checkPostCall(...);
void checkBranchCondition(...);

3 - Reason: {...} 3 void checkLocation(...);

@Report Triage

void checkBind(...);

@Checker Refinement

26

How to identify false positive?

e \alidate the bug pattern

27

How to identify false positive?

e \alidate the bug pattern
e \alidate against pre/post patch behavior

28

How to identify false positive?

e \alidate the bug pattern
e \alidate against pre/post patch behavior
e Evaluate the feasibility of false positive patterns

29

How to identify false positive?

e \alidate the bug pattern
e \alidate against pre/post patch behavior

e Evaluate the feasibility of false positive patterns
o Bounds

o Numeric /[bounds feasibility (if applicable):

o Infer tight min/max ranges for all involved variables from types, prior checks, and loop bounds.

o Show whether overflow/underflow or OOB is actually triggerable (compute the smallest/largest values that violate constraints).

30

How to identify false positive?

e \alidate the bug pattern
e \alidate against pre/post patch behavior
e Evaluate the feasibility of false positive patterns

(@)

(@)

Bounds
Null-pointer dereference

¢ Null-pointer dereference feasibility (if applicable):

i. Identify the pointer source and return convention of the producing function(s) in this path (e.g., returns NULL, ERR_PTR,
negative error code via cast, or never-null).
ii. Check real-world feasibility in this specific driver/socket/filesystem/etc.:
= Enumerate concrete conditions under which the producer can return NULL/ERR_PTR here (e.g., missing DT/ACPI property,
absent PCI device/function, probe ordering, hotplug/race, Kconfig options, chip revision/quirks).

= Verify whether those conditions can occur given the driver's init/probe sequence and the kernel helpers used.
iii. Lifetime & concurrency: consider teardown paths, RCU usage, refcounting (get/put), and whether the pointer can become
invalid/NULL across yields or callbacks.
iv. If the producer is provably non-NULL in this context (by spec or preceding checks), classify as false positive.

31

An example of false positive

e ‘“unlikely” is a hint for the branch predictor

int sh_pfc_register_pinctrl(struct sh_pfc *pfc) {
struct sh_pfc_pinctrl *pmx;
int ret;
pmx = devm_kzalloc(pfc->dev, sizeof(xpmx), GFP_KERNEL);
if (unlikely(!pmx)) FP by triage agent
return -ENOMEM;

pmx->pfc = pfc; Reported by checker

e

J/

Figure 7. A report labeled as FP by our triage agent.

What do we do with the false positives?

e Refine the checkers based on the identified false positives using an LLM
agent 7 void checkPostcall(...) const { ~

if (!ExprHasName(OriginExpr, "devm_kzalloc", C))

L T add 3rd pattern here to check
) — L] L]
void kheckBranchCol:dition(. 5 .)lconst { If(u n I I kely(! ptr))

// Pattern 1: if (lptr)
if (const UnaryOperator *U0 =
dyn_cast<UnaryOperator>(CondExpr)) {
if (U0->getOpcode() == UO_LNot) {

State = markRegionChecked(State, MR);
}
3
// Pattern 2: if (ptr == NULL) or if (ptr != NULL)

}

void checkLocation(...) const {

// Look up the region in the PossibleNullPtrMap.
const bool *Checked = State->get<PossibleNullPtrMap>(MR);
// If the region is recorded as unchecked, warn.
if (Checked && *Checked == false)
reportUncheckedDereference(MR, S, C);
}
void checkBind(...) const {

// For pointer assignments, update the aliasing map.
State = State->set<PtrAliasMap>(LHSReg, RHSReg);
State = State->set<PtrAliasMap>(RHSReg, LHSReg);

\ /

(c) A checker synthesized by KNighter for the patch in Fig. 2a.

What do we do with the false positives?

e Refine the checkers based on the identified false positives

e Continue to refine until
o it no longer generates warnings for the previously identified false positive cases
o it maintains its validity by correctly differentiating between the original buggy and patched
code versions

34

Evaluation

35

Evaluation Setup

ROQ-1.
RQ-2.

RQ-3.

RQ-4.

Can KNighter generate high-quality checkers?

Can the checkers generated by KNighter find real-
world kernel bugs?

Are the capabilities of KNighter orthogonal to the
human-written checkers?

Are all the key components in KNighter effective?

36

RQ1: Checkers Quality

e Evaluated on 61 hand-picked commits

Bug Type

Valid

’ Total | Invalid | Direct Refined Fail

NPD
Integer-Overflow
Out-of-Bound
Buffer-Overflow
Memory-Leak
Use-After-Free
Double-Free

UBI
Concurrency
Misuse

()}

N OO 00Ny ot NN

W N = o= BN WDN W e

W W = U1 DN WDN =D

[\)

_ O W R = O O O W

Total

(@)
—

N
[\)

[\")
(o))

Pt
p—

N | © O O =R OO O O O M-

37

RQ1: Checkers Quality

e 22 invalid checkers due to
o 2 inaccurate bug patterns
o 7 inaccurate plan
o 13 inaccurate implementations
m Static analysis struggles with establishing buffer bounds during compilation

38

RQ1: False Positive

e Run the 37 valid checkers on the entire codebase
e Found 29 false positives (32.2%)

o Most of them are caused by trigger condition management such as
failing to recognize a pointer had already been validated before use

39

RQ2: New Bugs

e Run KNighter on 61 hand-picked commits + 100 automatically collected
commits

| Total | Confirmed Fixed Pending | CVE
KNighter | 92 | 77 57 15| 16

40

RQ2: New Bugs

53
Bugs from hand-collected commits

S Bugs from auto-collected commits

Number of Bugs
w B U
o o o

)
o
I

0 T T T f
QO \\Q} 066 (\d’ Q/’Sl_ \\?} OQ;’ ?{(QQ’
< &O &9 & & O
N)
N S &9

RQ2: New Bugs

U (@)}
o o
1 1

Bugs from hand-collected commits
A Bugs from auto-collected commits

wn
)
= %
0 40 A //
S /
GL) 30' /
Yo
7
> 20
=2 / 14

10 A / 7

3
0 % 77 Wl// B rrora ek ke L
& (\b é & Qj’) \‘0 (‘5\ b@
é{\@ (ooo ® G)@@Q\ > \(\O\)

42

RQ2: New Bugs

15

5

Y

NN

N

0-1yr 12yr 2-5yr 5-10yr 10-15yr 15+ yr

(d) Number of bugs with different lifetimes.

43

RQ3: Comparison with handmade checkers

e Compared with Smatch (static analysis tool used for linux kernel)

e Smatch failed to detect any of our true positive bugs
o Smatch do not fully leverage the domain-specific knowledge embedded in the Linux kernels

44

RQ4: Ablation Test

e Evaluate the effect of a component independently

o Multi-stage vs single-stage Table 2. Ablation study results. “Default” means
o Example selection (manual vs RAG) KNighter’s standard configuration utilizing multi-stage syn-
o Different LLM models thesis, fixed few-shot examples, and the O3-mini model. Al-

ternative configurations are compared against this baseline.

Variants | Valid | Erors

| | Syntax Runtime Semantics
Default | 12| 28 0 75
W/o multi-stage 8 52 3 75
W/ RAG 12 37 4 62
W/ GPT-40 11 31 0 76
W/ DeepSeek-R1 11 29 8 66
W/ Gemini-2-flash 4 130 2 44

Limitations

e It's limited to bug patterns specific for C and doesn’t account for the semantic
of the bug
e The heuristics used to detect false positive can be improved

46

Thanks!

