
KNighter: Transforming Static Analysis with
LLM-Synthesized Checkers

Presenter: Dimas Parikesit (vqx2dc)

Current state of Static Analysis Checker

2

Traditional Static Analysis

● Clang Static Analyzer (CSA) has a set of handmade checkers

https://clang.llvm.org/docs/analyzer/
checkers.html

3

Traditional Static Analysis

● Clang Static Analyzer (CSA) has a set of handmade checkers
● CSA can check the entire program
● But it lacks domain knowledge (such as which functions may return null?)

4

Traditional Static Analysis

● Clang Static Analyzer (CSA) has a set of handmade checkers
● CSA can check the entire program
● But it lacks domain knowledge (such as which functions may return null?)

5

6

Traditional Static Analysis

● Clang Static Analyzer (CSA) has a set of handmade checkers
● CSA can check the entire program
● But it lacks domain knowledge (such as which functions may return null?)

7

LLM-Based Automated Scan

● LLM can learn domain specific knowledge
(such as devm_kzalloc may return null)

● But directly using LLM to scan the entire codebase is impossible because
of limited context window

8

Current state of Static Analysis

How to combine ease-of-use of LLM with the
scalability of traditional static analysis?

KNighter

9

KNighter

10

KNighter

Automatically synthesize CSA checker from a patch commit

11

KNighter

Automatically synthesize CSA checker from a patch commit Synthesis

Refinement 12

Checker Synthesis

13

(1) Pattern Analysis

● Extract targeted bug patterns derived from the patch context.
● A bug pattern is the root cause of this bug, meaning that programs with this

pattern will have a great possibility of having the same bug.

14

(1) Pattern Analysis

● These patterns are pre-determined

15

(1) Pattern Analysis

Expanded
functions

16
Examples

(1) Pattern Analysis

17

(2) Plan Synthesis

● Generates a high-level plan for implementing the static analysis checker
● Goal:

○ Provides structured guidance to the LLMs during the actual checker generation to prevent
confusion

○ Facilitates debugging of the entire pipeline by making the LLMs’ reasoning process
transparent and traceable

18

(2) Plan Synthesis: Prompt

19

(3) Checker Generation

● Generate CSA checker based on the plan

20

(4) Checker Repair

● Any LLM-generated code might be broken
● Use an LLM debugging agent to fix syntax error by automatically

processes compiler error messages and applies necessary fixes

21

(4) Checker Repair

● Any LLM-generated code might be broken
● Use an LLM debugging agent to fix syntax error by automatically

processes compiler error messages and applies necessary fixes

22

(5) Checker Validation

● Mitigate LLM inaccuracies

23

(5) Checker Validation

● Mitigate LLM inaccuracies
● Scoped to only the files modified by the patch

24

Checker Refinement

25

How to prevent potential false positive?

● Run checkers on the entire program
● For all reported potential bugs

○ Evaluate the generated bug report to identify the false positives
○ Use the identified false positives back to refine the checker

26

How to identify false positive?

● Validate the bug pattern

27

How to identify false positive?

● Validate the bug pattern
● Validate against pre/post patch behavior

28

How to identify false positive?

● Validate the bug pattern
● Validate against pre/post patch behavior
● Evaluate the feasibility of false positive patterns

29

How to identify false positive?

● Validate the bug pattern
● Validate against pre/post patch behavior
● Evaluate the feasibility of false positive patterns

○ Bounds

30

How to identify false positive?

● Validate the bug pattern
● Validate against pre/post patch behavior
● Evaluate the feasibility of false positive patterns

○ Bounds
○ Null-pointer dereference

31

An example of false positive

● “unlikely” is a hint for the branch predictor

32

What do we do with the false positives?

● Refine the checkers based on the identified false positives using an LLM
agent

add 3rd pattern here to check
if(unlikely(!ptr))

33

What do we do with the false positives?

● Refine the checkers based on the identified false positives
● Continue to refine until

○ it no longer generates warnings for the previously identified false positive cases
○ it maintains its validity by correctly differentiating between the original buggy and patched

code versions

34

Evaluation

35

Evaluation Setup

36

RQ1: Checkers Quality

● Evaluated on 61 hand-picked commits

37

RQ1: Checkers Quality

● 22 invalid checkers due to
○ 2 inaccurate bug patterns
○ 7 inaccurate plan
○ 13 inaccurate implementations

■ Static analysis struggles with establishing buffer bounds during compilation

38

RQ1: False Positive

● Run the 37 valid checkers on the entire codebase
● Found 29 false positives (32.2%)

○ Most of them are caused by trigger condition management such as
failing to recognize a pointer had already been validated before use

39

RQ2: New Bugs

● Run KNighter on 61 hand-picked commits + 100 automatically collected
commits

40

RQ2: New Bugs

41

RQ2: New Bugs

42

RQ2: New Bugs

43

RQ3: Comparison with handmade checkers

● Compared with Smatch (static analysis tool used for linux kernel)
● Smatch failed to detect any of our true positive bugs

○ Smatch do not fully leverage the domain-specific knowledge embedded in the Linux kernels

44

RQ4: Ablation Test

● Evaluate the effect of a component independently
○ Multi-stage vs single-stage
○ Example selection (manual vs RAG)
○ Different LLM models

45

Limitations

● It’s limited to bug patterns specific for C and doesn’t account for the semantic
of the bug

● The heuristics used to detect false positive can be improved

46

Thanks!

47

