
Mirage
A Multi-Level Superoptimizer for Tensor Programs

Authors: Wu et al. 
Presenter: John Berberian, Jr.



GPUs are Extremely Useful

GPUs: just rendering? No more!

● CUDA (2007)
● OpenCL (2009)

Ever since CUDA, GPUs are used everywhere:

● AI/ML, computer vision
● Large-scale data processing
● Simulation, rendering



Tensor Programs

Operate on multidimensional arrays

Possible representation: DAG

● Edges are tensors
● Nodes are operations

Example: RMSNorm and matrix multiply



Problem: Writing Efficient Code is Hard

● Complex GPU memory hierarchy
● Multiple parallel thread blocks:

○ Mapping problem across blocks
○ Efficiently sharing memory
○ Synchronization challenges

● Cache structure

Writing CUDA well is very challenging!



Old Solution: Hand-Optimized Kernels

● Expert-written GPU kernels
● Manually-designed rules for mapping

Much easier to use! But:

● Large up-front engineering cost
● Missed optimization opportunities
● Hardware changes → maintenance cost



Previous Work: Schedule Optimization

For a given algorithm, optimize how it is mapped to hardware.

Key ideas:

● Separation of algorithm and schedule
● Optimize execution strategies for target hardware

Ex: Halide, TVM, Ansor

Problem: misses algorithmic optimizations



Previous Work: Algorithmic Transformations

Perform algebraic transformations to simplify algorithms.

Key ideas:

● Operator fusion can simplify computation
● Faster algorithms can be mathematically equivalent

Ex: TASO, Grappler, Tensat, PET.

Problem: cannot perform coordinated algorithm-schedule transformations



Mirage: A Multi-Level Superoptimizer

Mirage combines the two optimization methods.

Techniques:

● μGraphs: hierarchical graph representation of tensor program
● Automatic discovery and verification of joint schedule/algorithm optimizations
● Exhaustive search of kernel space can yield optimized custom kernels

Quicker development, higher performance, easier hardware migration





How to explore search space?

More optimizations → larger search space

● Partition program into limited LAX 
subprograms

● Prioritize kernel- and block-level 
optimizations → restrict exhaustive 
search to high-level

● Prune exhaustive search using novel 
abstract expressions technique



Abstract Expression Pruning

Simplified mathematical representation of μGraph, abstracting indexing details.

● All equivalent μGraphs will have abstract expressions that are substrings, up 
to some algebraic transformations, of the original.

● First-order logic is used for transforming these expressions.

Explanation of the mechanics was rather unclear.



Probabilistic μGraph Verification

Equivalence of abstract expressions does not guarantee correctness.

To verify the generated μGraphs:

● Perform tests over randomized finite fields
● Repeat testing until chance of error falls below threshold

Authors claim specific error bound for LAX μGraphs; no proof provided.

Paper briefly mentions full (non-probabilistic) verifier for non-LAX programs.



μGraph Optimization

The verified μGraphs might not use optimal memory layout or scheduling.

This stage optimizes:

● Tensor memory layout
● Operator scheduling and synchronization
● Memory access and storage planning

Image credit: Unity Sentis Documentation



Full Mirage Architecture

Put it all together!

Unclear:

● How the most optimal μGraph is 
selected

● When the LAX subprograms are 
combined

● How the caching hierarchy plays 
into optimization choices



Evaluation

Primarily on DNN benchmarks:

● Group-Query Attention
● Query-Key Normalization
● Low-Rank Adaptation
● RMS Normalization
● Gated Multi-Layer Perceptron
● Normalized Transformer

FP32, on A100 and H100, 40GB. 

Batch size: 1, 8, 16.







End-to-End Performance



Ablation Studies

What changes when we 
disable certain parts of the 
system?

● Kernel performance
● Compilation times



Paper Review

Strengths:

● Impressive results
● Good explanation of µGraphs
● Excellent idea

Weaknesses:

● Explanation of mathematical details was unclear
● Output kernels are only likely correct
● Optimization is costly for large programs



Questions?


