Mirage
A Multi-Level Superoptimizer for Tensor Programs

Authors: Wu et al.
Presenter: John Berberian, Jr.

GPUs are Extremely Useful

GPUs: just rendering? No more!

e CUDA (2007)
e OpenCL (2009)

Ever since CUDA, GPUs are used everywhere:

e AI/ML, computer vision
e Large-scale data processing
e Simulation, rendering

Tensor Programs

[b=16, h=1024]

E— R —H =16, a=409]
4

Kernel graph

[b=16, h=1024] K4 ¥

[h=1024, d=4096]

T . Xi G d

Operate on multidimensional arrays = G pvs(x;) = 1 ZXiZ-»
_ , RMS(X;) 7 e B

Possible representation: DAG J

e Edges are tensors
e Nodes are operations

Example: RMSNorm and matrix multiply

Problem: Writing Efficient Code is Hard

. Grid - Per-GPU
e Complex GPU memory hierarchy Thread Block Thread Block Device Memory
e Multiple parallel thread blocks: stared wemory | Mo

o Mapping problem across blocks
o Efficiently sharing memory
o Synchronization challenges

Per-Thread
Register File (RF)

:| Thread Block
e Cache structure Thread
rea

Thread I

Thread

Writing CUDA well is very challenging!

__global void staticReverse(int *d, int n)

{
__shared int s[64];
int t = threadIdx.x;
int tr = n-t-1;

s[t] = d[t];
~_syncthreads () ;
d(t] = s[tr];

Old Solution: Hand-Optimized Kernels

e Expert-written GPU kernels
e Manually-designed rules for mapping

Much easier to use! But:

e Large up-front engineering cost O PyTO rCh

e Missed optimization opportunities
e Hardware changes — maintenance cost

[b=16, h=1024] ¢ [b=16, h=1024]

[h= 1024]n—> —5 m. [b=16, d=4096]

[h=1024, d=4096] || § Kernel graph

Previous Work: Schedule Optimization

For a given algorithm, optimize how it is mapped to hardware.

Key ideas:

e Separation of algorithm and schedule
e Optimize execution strategies for target hardware

Ex: Halide, TVM, Ansor

Problem: misses algorithmic optimizations

[b=16, h=1024] ¢ [b=16, h=1024]

[h= 1024]n—> —5 m. [b=16, d=4096]

[h=1024, d=4096] || §

Kernel graph

Previous Work: Algorithmic Transformations

Perform algebraic transformations to simplify algorithms.
Key ideas:

e QOperator fusion can simplify computation
e Faster algorithms can be mathematically equivalent

Ex: TASO, Grappler, Tensat, PET.

Problem: cannot perform coordinated algorithm-schedule transformations

[b=16, h=1024] ¢ [b=16, h=1024]

[h= 1024]n—> ~ia m. [b=16, d=4096]

[h=1024, d=4096] || § Kernel graph

Mirage: A Multi-Level Superoptimizer

Mirage combines the two optimization methods.
Techniques:

e Graphs: hierarchical graph representation of tensor program
e Automatic discovery and verification of joint schedule/algorithm optimizations
e Exhaustive search of kernel space can yield optimized custom kernels

Quicker development, higher performance, easier hardware migration

[b=16, h=1024] ¢ [b=16, h=1024]

[h= 1024]n—> —5 m. [b=16, d=4096]

[h=1024, d=4096] || § Kernel graph

10=16, h=1024)] e
[h=1024] |8 ragp)P4 (=16, d=4096]

[h=1024, d=4096] : Kernel graph

[
grid size: [x=128], forloop: [i=16] -

- Input [b=1 6,7h=64l
lterator
fmap: {i—h}

imap: {x—0}
[b=16, h=1024]

imap: {x-0}

[h=1024]
fmap: {i—h} , omap: {x«_—»d}
imap: {X(—)d} Input d=32] [b=16, d=32]
h=1024, d=32 lterat - =
[] fm h} h=64, o=3z] For-loop body Block graph
block size: [x=32] forloop' [
imap: {x<@ cart W Div
@ crreiop b Devico memory 1oric B (L -
’ fmap {} 2 r 4
’Block op -.->Shared MeMOry imap: {x«>d} E" 171024 "Outpul _,
b=16, d=1 Saver 4
Thread op +{>Register file [] fmap {} omap: {x<d}

Thread graph [b=16, d=32]

How to explore search space?

More optimizations — larger search space

Partition program into limited LAX
subprograms

Prioritize kernel- and block-level
optimizations — restrict exhaustive
search to high-level

Prune exhaustive search using novel
abstract expressions technique

o Lax Program
-9 %0 m

Compute abstract expression of the input Lax program

Q Kernel and block graph generation (§4.1)

Start from | Repeatedly generate |
the inputs | kernel and block I expressions (§4.3)
of the Lax operators I

prfﬁm B, o 'R, o .
B0 @ &4
: E/ @ 'B/' ﬂsubexpr(Eo)

Generate kernel and block graphs w/o thread-graph-defined operators

n\ _____________
E;O»&E ¢%%-0

9 Thread graph construction (§4.2)
n\ Fuse subgraphs matching a pre-defined

w ._»‘_’E pattern to thread-graph-defined operators
b 4

B’ e >O>0>

Prune out prefixes via abstract

Abstract Expression Pruning

Simplified mathematical representation of pGraph, abstracting indexing details.

e All equivalent uGraphs will have abstract expressions that are substrings, up
to some algebraic transformations, of the original.
e First-order logic is used for transforming these expressions.

Explanation of the mechanics was rather unclear.

Y| | e gse?

26:1—1?—;(6“ /3 64€%)

v Q-
0

Probabilistic uyGraph Verification

Equivalence of abstract expressions does not guarantee correctness.

To verify the generated uGraphs:

e Perform tests over randomized finite fields
e Repeat testing until chance of error falls below threshold

Authors claim specific error bound for LAX uGraphs; no proof provided.

Paper briefly mentions full (non-probabilistic) verifier for non-LAX programs.

uGraph Optimization

The verified pyGraphs might not use optimal memory layout or scheduling.
This stage optimizes:

e Tensor memory layout
e Operator scheduling and synchronization
e Memory access and storage planning

[el[7] 8
1

2 1ln 0 1 2 3 < 5 6 7 8 9 |10 | M

3 41]l5
/s

3

2 x 2 x 3 tensor Tensor layout in memory

Image credit: Unity Sentis Documentation

Full Mirage Architecture

Put it all together!
Unclear:

e How the most optimal uGraph is
selected

e When the LAX subprograms are
combined

e How the caching hierarchy plays
into optimization choices

Input Tensor Program

lProgram Partitioning

(Lax Subprogram] « = «(" Lax Subprogram |

lLax Subprogram
Expression-Guided uGraph Generator (§4)

(uGraph (§3)] (#Graph]« = « uGraph

l uGraph Candidate
Probabilistic Equivalence Verifier (§5)
| Verified uGraph | === [Verified uGraph |

lVeriﬁed uGraph
uGraph Optimizer (86)
Layout Operator Memory
Optimizations Scheduling Planning
l Optimized uGraph

Optimized Tensor Program

Evaluation

Primarily on DNN benchmarks:

Group-Query Attention
Query-Key Normalization
Low-Rank Adaptation

RMS Normalization

Gated Multi-Layer Perceptron
Normalized Transformer

FP32, on A100 and H100, 40GB.
Batch size: 1, 8, 16.

mEm TASO

FlashAttention

— FlashDecoding

28X 12% 1.8%

1.00 1
0.75 |

S0.50

Al
&

o o
o
o

2 0.00
BS=1 BS=8 BS=16

GQA
22Kk L3x L%

1.00 |

025

Relative Performance

0.50 -

H100

0.25 1

0.00 -

BS=1 BS=8 BS=16
GQA

TensorRT

1.1x 1.0x 0.9x

1.00 1
0.75 -
0.50 -

0.254

2 0
BS=1 BS=8 BS=16

QKNorm
1.4x X% 1.2%

1.00 1

0.75 1

0.50 -

0.25 1

00 -
BS=1 BS=8 BS=16

QKNorm

B onsorRT-LLM ™= PyTorch ==m Triton

3.2x 2.4x _ 1.5x

1.00 -
0.75 4
0.50 1

0.25 1

BS=1 BS=8 BS=16
RMSNorm
1.0 12 10X

1.00 1
0:75:
0.50 1

0.25 1

BS=1 BS=8 BS=16
RMSNorm

B Mirage

Em TASO

—1

Relative Performance

H100

FlashAttention

FlashDecoding

1:5X% 1.1x L2

1.00 1

0.75

BS=1 BS=8 BS=16
LoRA
2.3x. 2.48% 2.0

1.00 1

75

o
n
o

0.25 1

0.00 -

BS=1 BS=8 BS=16
LoRA

~ TensorRT
TensorRT-LLM

1.00 1

0.75 1

0.50 -

0.25 1

W PyTorch Triton
1.5 15x 15x 0.3x__ 0.3x__ 0.3x
1.00 4 B
075
0.50
0.25 -

0.00

BS=1 BS=8 BS=16

GatedMLP
2.7% 2ZHX " 3.3%
1.00 A
0.75 -
0.50 -
0.25 A

T

BS=1 BS=8 BS=16

GatedMLP

o bl L

BS=1 BS=8 BS=16
nTrans

1.00 4

0.75 1

0.50 A

0.25 1

0.4x 0.3x 0.4x

d bl

BS=1 BS=8 BS=16
nTrans

mam Mirage

End-to-End Performance

PyTorch PyTorch w/ Mirage

15 -

N
o
N
o
(o)}

10 - %

10
5% 2 -

[
o

Per-iteration
Latency (ms)

o

BS—1 BS=8BS-16 BS—1 BS=8BS=16 BS—1 BS=8BS—16 BS=1 BS=8BS16
Chameleon-7B LLaMA-3-8B GPT-3-7B-LoRA nGPT-1B

Ablation Studies

0.95x

=
(]
1

What changes when we 0.82x

disable certain parts of the
system?

0.4x
0.3x

Relative
Performance
o
w

o
o

Mirage Mirage w/o Mirage w/o Mirage w/o Mirage w/o

e Kernel performance
Thread Graph Layout Operator Memory

® Compilation times Construction Optimization Scheduling Planning
Max # Opsin | Mirage Mirage w/o Mirage w/o
a Block Graph Multithreading | Abstract Expression
3 11 sec 58 sec 768 sec
6 16 sec 93 sec 19934 sec
7 22 sec 150 sec >10h
8 24 sec 152 sec >10h
9 26 sec 166 sec >10h
10 26 sec 166 sec >10h
11 28 sec 183 sec >10h

Paper Review

Strengths:

e Impressive results
e Good explanation of uGraphs
e Excellentidea

Weaknesses:

e Explanation of mathematical details was unclear
e Qutput kernels are only likely correct
e Optimization is costly for large programs

Questions?

