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GPUs are Extremely Useful

GPUs: just rendering? No more!

e CUDA (2007)
e OpenCL (2009)

Ever since CUDA, GPUs are used everywhere:

e AI/ML, computer vision
e Large-scale data processing
e Simulation, rendering



Tensor Programs
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e Edges are tensors
e Nodes are operations

Example: RMSNorm and matrix multiply



Problem: Writing Efficient Code is Hard

. Grid - Per-GPU
e Complex GPU memory hierarchy Thread Block Thread Block Device Memory
e Multiple parallel thread blocks: stared wemory | Mo

o Mapping problem across blocks
o Efficiently sharing memory
o  Synchronization challenges

Per-Thread
Register File (RF)

:| Thread Block
e Cache structure Thread
rea

Thread I

Thread

Writing CUDA well is very challenging!

__global  void staticReverse(int *d, int n)

{
__shared  int s[64];
int t = threadIdx.x;
int tr = n-t-1;

s[t] = d[t];
~_syncthreads () ;
d(t] = s[tr];




Old Solution: Hand-Optimized Kernels

e Expert-written GPU kernels
e Manually-designed rules for mapping

Much easier to use! But:

e Large up-front engineering cost O PyTO rCh

e Missed optimization opportunities
e Hardware changes — maintenance cost
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Previous Work: Schedule Optimization

For a given algorithm, optimize how it is mapped to hardware.

Key ideas:

e Separation of algorithm and schedule
e Optimize execution strategies for target hardware

Ex: Halide, TVM, Ansor

Problem: misses algorithmic optimizations
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Previous Work: Algorithmic Transformations

Perform algebraic transformations to simplify algorithms.
Key ideas:

e QOperator fusion can simplify computation
e Faster algorithms can be mathematically equivalent

Ex: TASO, Grappler, Tensat, PET.

Problem: cannot perform coordinated algorithm-schedule transformations
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Mirage: A Multi-Level Superoptimizer

Mirage combines the two optimization methods.
Techniques:

e Graphs: hierarchical graph representation of tensor program
e Automatic discovery and verification of joint schedule/algorithm optimizations
e Exhaustive search of kernel space can yield optimized custom kernels

Quicker development, higher performance, easier hardware migration
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How to explore search space?

More optimizations — larger search space

Partition program into limited LAX
subprograms

Prioritize kernel- and block-level
optimizations — restrict exhaustive
search to high-level

Prune exhaustive search using novel
abstract expressions technique
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Abstract Expression Pruning

Simplified mathematical representation of pGraph, abstracting indexing details.

e All equivalent uGraphs will have abstract expressions that are substrings, up
to some algebraic transformations, of the original.
e First-order logic is used for transforming these expressions.

Explanation of the mechanics was rather unclear.
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Probabilistic uyGraph Verification

Equivalence of abstract expressions does not guarantee correctness.

To verify the generated uGraphs:

e Perform tests over randomized finite fields
e Repeat testing until chance of error falls below threshold

Authors claim specific error bound for LAX uGraphs; no proof provided.

Paper briefly mentions full (non-probabilistic) verifier for non-LAX programs.



uGraph Optimization

The verified pyGraphs might not use optimal memory layout or scheduling.
This stage optimizes:

e Tensor memory layout
e Operator scheduling and synchronization
e Memory access and storage planning
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Full Mirage Architecture

Put it all together!
Unclear:

e How the most optimal uGraph is
selected

e When the LAX subprograms are
combined

e How the caching hierarchy plays
into optimization choices

Input Tensor Program

lProgram Partitioning

(Lax Subprogram ] « = «(" Lax Subprogram |

lLax Subprogram
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(uGraph (§3)] ( #Graph ]« = «  uGraph

l uGraph Candidate
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| Verified uGraph | === [ Verified uGraph |

lVeriﬁed uGraph
uGraph Optimizer (86)
Layout Operator Memory
Optimizations Scheduling Planning
l Optimized uGraph

Optimized Tensor Program




Evaluation

Primarily on DNN benchmarks:

Group-Query Attention
Query-Key Normalization
Low-Rank Adaptation

RMS Normalization

Gated Multi-Layer Perceptron
Normalized Transformer

FP32, on A100 and H100, 40GB.
Batch size: 1, 8, 16.
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End-to-End Performance

PyTorch PyTorch w/ Mirage
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Ablation Studies
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Paper Review

Strengths:

e Impressive results
e Good explanation of uGraphs
e Excellentidea

Weaknesses:

e Explanation of mathematical details was unclear
e Qutput kernels are only likely correct
e Optimization is costly for large programs



Questions?



