
TrainVerify: Equivalence-Based 
Verification for Distributed LLM 

Training

1

Yunchi Lu (University of Michigan), Youshan Miao (Microsoft 
Research), Cheng Tan (Northeastern University), Peng Huang

(University of Michigan), Yi Zhu, Xian Zhang, Fan Yang (Microsoft 
Research)



Enabling large models through scaling that are prone 
to silent errors

2

671 B

405 B

GPU 0

Single device

Data

Model

Don’t fit on one GPU Tensor Parallelism (TP)
GPU 0 GPU 1 GPU 2 GPU 3

Optimizer

Communication

Schedule

Scaling techniques are complex

Sharding

Wrong communication operations Wrong sharding Wrong calculation

Behavior not like single-device pipeline, loss value not 
decreasing or garbage outputs

Model quality to drop

Prone to silent errors



Example: Missing all-reduce (Megatron-LM)

LinearWithFrozenWeight backward fix when TP > 1, bug leads to non-decreasing loss

3

Detecting when to do the all-reduce is difficult when manually 
looking through large ml-systems codebase



Silent bugs are tricky since they are subtle

4

Position: Expose silent errors before
deployment

Position: Guarantee absence of errors in 
pipelines

Testing frameworks

DeepXplore [SOSP ‘17], DeepTest [ICSE ‘18], Eagle [ICSE ‘22], NNSmith [ASPLOS ‘23], MLIRSmith [ASE 
‘23], PolyJuice [OOPSLA ‘24]

Fault-tolerant to failures
Relies on explicit error signals

Runtime recovery

CheckFreq [FAST ‘21], Varuna [EuroSys ‘22], GEMINI [SOSP ‘23], Oobleck [SOSP ‘23], Bamboo [NSDI ‘23], 
ReCycle [SOSP ‘24]

Detects many bugs
No guarantee of absence of bugs



Developers approach in debugging is ad-hoc
Examine intermediate tensor values in the entire huge code space manually 

attention.py
print(...)
result = hlo.reshape(result, (n_seqs, 
n_active_tokens, hidden_size))
print(...)

5

Optimizer

Scheduling

Sharding

Backend

Numerous amount of phases
Hard to differentiate correct and wrong tensors due to
floating-point round-off errors
Tedious to manually piece tensors on multiple devices to 
match single on



6

Expose silent errors without explicit signals



TrainVerify Workflow

• Extract DFGs from logical and distributed (1) and (6)

• Symbolize DFGs from concrete tensors (3) (4) using lineage metadata 
(2) to track dependencies between logical and distributed

• Check equivalence using SMT solver (5)

7



Symbolic DFGs

• Construct manually DFG that represents the logical and distributed 
model which represent the forward and backward pass 

• Define manually formal definition of operators in DNN frameworks 

• Lineage: Tracks how tensors are related between single-device and 
distributed tensors

8



Lineage

9



Shape reduction

• Operating on per-element values in tensor is expensive

• DNN operators have the SIMD (Single Instruction, Multiple Data) 
property, apply same computation across different data elements

10



Minimum shapes

• Shape alignment: reshape (M,N) to (M,P,Q) where N = PxQ

• Semantic intact: avoid reducing shape to 1 to avoid incorrectness in 
matmul

11



Stage-Parallel Verification

• Divide model into multiple stages and verify them in parallel 

• Each stage consists of aligned subgraphs from single-device and 
distributed graphs, where each stage’s boundary is defined as tensors 
with lineage information

12



Implementation
• 6000 lines of code in Python

• Built on nnScaler, a distributed training framework from Microsoft

• Builds the single-device and distributed plans from generated IR 
graphs in nnScaler

• Tensor lineage is built using nnScaler’s indexing metadata and source 
code

13



Evaluation (Real-world models)

14



Evaluation (Setup)

• Dataflow graphs generated from machines with 4 A6000 GPUs

• Execution plans scaling up to 8192 GPUs

15



Evaluation (Scalability)

16



Evaluation (Scalability)

17



Evaluation (Bugs eliminated)

• Incorrect communication operators

• Incorrect device assignment

• Incorrect partitioning

• Incorrect scaling

• Incorrect pipeline scheduling

• First four bugs are completely eliminated in TrainVerify, for the 5th

bug, TrainVerify eliminates through early data dependency analysis

18



Evaluation (Bugs eliminated)

• The bugs are reproduced in nnScaler, a machine learning training 
framework developed by Microsoft Research

19



Evaluation (New bugs)

• C1: Sharding a non-partitionable dimension

• C2: Dangling tensors in backward pass

20



Limitations

• Heavy reliance on graph-based execution plans 

• Shape reduction assumes linearity on DNN operators

• Lineage information might be needed to be added manually

21



Conclusion

• Silent errors exist in many distributed training frameworks which are 
difficult to detect using existing work 

• TrainVerify argues using the generated graphs, these errors can be 
exposed by verifying their equivalence

• TrainVerify scales to large models and exposes 14 old bugs and 2 new 
categories of bugs in machine learning training frameworks

22


