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Enabling large models through scaling that are prone 
to silent errors
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Example: Missing all-reduce (Megatron-LM)

LinearWithFrozenWeight backward fix when TP > 1, bug leads to non-decreasing loss
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Detecting when to do the all-reduce is difficult when manually 
looking through large ml-systems codebase



Silent bugs are tricky since they are subtle
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Position: Expose silent errors before
deployment

Position: Guarantee absence of errors in 
pipelines

Testing frameworks

DeepXplore [SOSP ‘17], DeepTest [ICSE ‘18], Eagle [ICSE ‘22], NNSmith [ASPLOS ‘23], MLIRSmith [ASE 
‘23], PolyJuice [OOPSLA ‘24]

Fault-tolerant to failures
Relies on explicit error signals

Runtime recovery

CheckFreq [FAST ‘21], Varuna [EuroSys ‘22], GEMINI [SOSP ‘23], Oobleck [SOSP ‘23], Bamboo [NSDI ‘23], 
ReCycle [SOSP ‘24]

Detects many bugs
No guarantee of absence of bugs



Developers approach in debugging is ad-hoc
Examine intermediate tensor values in the entire huge code space manually 

attention.py
print(...)
result = hlo.reshape(result, (n_seqs, 
n_active_tokens, hidden_size))
print(...)
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Optimizer

Scheduling

Sharding

Backend

Numerous amount of phases
Hard to differentiate correct and wrong tensors due to
floating-point round-off errors
Tedious to manually piece tensors on multiple devices to 
match single on



6

Expose silent errors without explicit signals



TrainVerify Workflow

• Extract DFGs from logical and distributed (1) and (6)

• Symbolize DFGs from concrete tensors (3) (4) using lineage metadata 
(2) to track dependencies between logical and distributed

• Check equivalence using SMT solver (5)
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Symbolic DFGs

• Construct manually DFG that represents the logical and distributed 
model which represent the forward and backward pass 

• Define manually formal definition of operators in DNN frameworks 

• Lineage: Tracks how tensors are related between single-device and 
distributed tensors
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Lineage
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Shape reduction

• Operating on per-element values in tensor is expensive

• DNN operators have the SIMD (Single Instruction, Multiple Data) 
property, apply same computation across different data elements
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Minimum shapes

• Shape alignment: reshape (M,N) to (M,P,Q) where N = PxQ

• Semantic intact: avoid reducing shape to 1 to avoid incorrectness in 
matmul
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Stage-Parallel Verification

• Divide model into multiple stages and verify them in parallel 

• Each stage consists of aligned subgraphs from single-device and 
distributed graphs, where each stage’s boundary is defined as tensors 
with lineage information
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Implementation
• 6000 lines of code in Python

• Built on nnScaler, a distributed training framework from Microsoft

• Builds the single-device and distributed plans from generated IR 
graphs in nnScaler

• Tensor lineage is built using nnScaler’s indexing metadata and source 
code
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Evaluation (Real-world models)
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Evaluation (Setup)

• Dataflow graphs generated from machines with 4 A6000 GPUs

• Execution plans scaling up to 8192 GPUs
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Evaluation (Scalability)
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Evaluation (Scalability)
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Evaluation (Bugs eliminated)

• Incorrect communication operators

• Incorrect device assignment

• Incorrect partitioning

• Incorrect scaling

• Incorrect pipeline scheduling

• First four bugs are completely eliminated in TrainVerify, for the 5th

bug, TrainVerify eliminates through early data dependency analysis
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Evaluation (Bugs eliminated)

• The bugs are reproduced in nnScaler, a machine learning training 
framework developed by Microsoft Research
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Evaluation (New bugs)

• C1: Sharding a non-partitionable dimension

• C2: Dangling tensors in backward pass
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Limitations

• Heavy reliance on graph-based execution plans 

• Shape reduction assumes linearity on DNN operators

• Lineage information might be needed to be added manually
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Conclusion

• Silent errors exist in many distributed training frameworks which are 
difficult to detect using existing work 

• TrainVerify argues using the generated graphs, these errors can be 
exposed by verifying their equivalence

• TrainVerify scales to large models and exposes 14 old bugs and 2 new 
categories of bugs in machine learning training frameworks
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