TrainVerify: Equivalence-Based
Verification for Distributed LLM
Training

Yunchi Lu (University of Michigan), Youshan Miao (Microsoft
Research), Cheng Tan (Northeastern University), Peng Huang
(University of Michigan), Yi Zhu, Xian Zhang, Fan Yang (Microsoft
Research)

Enabling large models through scaling that are prone
to silent errors

1 (0N - Vodel ﬂ ﬂ ﬂ ﬂ Scaling techniques are complex
ama 3. ode '

405 B Sharding Communication
- @ B B H B
@'deepseek Optimizer Schedule
671 8B GPUO GPUO GPU1 GPU2 GPU3 _
Don’t fit on one GPU Single device Tensor Parallelism (TP) Prone to silent errors
Wrong communication operations Wrong sharding Wrong calculation

= O N o sciipts Deepspeed zero3 partition activation JER e R Rl
Working <> Code ‘::" Issues 20

Il Pull requests 6 ® Actions [Projects @ Security ~/ Insights
<> Code (© lssues 689 I1 Pullrequests 91 U Discussions M DDP/GPU
stackoverflow ~About Products Overflowal | Q Search Discrepancies Between GPU and Neuron-based Outputs for GPT) Model on
inf2.24xlarge #°8

© open

[Bug] Gradients not synchronized Multi-machine training bug w

= O Lightning-Al / pytorch-lightning \ Type(/]to search Asked 11 months - :
O PyTorch

Part of NLP Collective

<> Code () Issues 882 {1 Pullrequests 72 UJ) Discussions () Actions [Projects [wiki) Security

..) . . . Bug in Data Parallel?
Manual Optimization does not synchronize gradients in DDP distbuted

Behavior not like single-device pipeline, loss value not Model quality to drop
decreasing or garbage outputs 2

Example: Missing all-reduce (Megatron-LM)

LinearWithFrozenWeight backward fix when TP > 1, bug leads to non-decreasing loss

def backward(ctx, grad output):
(weight,) = ctx.saved tensors
grad input = grad output.matmul(weight)

return grad _input, None, None

it ctx.allreduce dgrad:

H

All-reduce. Note: here async and sync are effectively the same.

torch.distributed.all reduce(grad input, group=get tensor model parallel group())

return grad input, None, None, None

Detecting when to do the all-reduce is difficult when manually
looking through large ml-systems codebase

Silent bugs are tricky since they are subtle

Runtime recovery

CheckFreq [FAST ‘21], Varuna [EuroSys ‘22], GEMINI [SOSP ‘23], Oobleck [SOSP ‘23], Bamboo [NSDI ‘23],
ReCycle [SOSP 24]

@ Fault-tolerant to failures Position: Expose silent errors before
@ Relies on explicit error signals deployment

Testing frameworks

DeepXplore [SOSP ‘17], DeepTest [ICSE ‘18], Eagle [ICSE 22], NNSmith [ASPLOS 23], MLIRSmith [ASE
‘23], PolyJuice [OOPSLA “24]

@ Detects many bugs Position: Guarantee absence of errors in
@ No guarantee of absence of bugs pipelines

Developers approach in debugging is ad-hoc

Examine intermediate tensor values in the entire huge code space manually

attention.py Optimizer
print(...)

=S

result = hlo.reshape(result, (n_seqs,
n_active tokens, hidden size))

rint(...
P () [Scheduling

Ne=s

@ Numerous amount of phases

@ Hard to differentiate correct and wrong tensors due to
floating-point round-off errors

@ Tedious to manually piece tensors on multiple devices to
match single on

Expose silent errors without explicit signals

logical graph parallelized graph
GPUO: DPO,TPO | GPUIL: DP0,TP1 | GPU2: DPL,TPO | GPU3: DP1,TP1

def training code gpu3():
model tp group = dist.new_group (ranks=[2,3])

o ... B upstream model code
gy3 =
w3 = ... b
gx3 = gy3.matmul {w3}o

9 dist.all_reduce (gx3,group=mode l_tp_grnup)e
. # downstream model code

TrainVerify Workflow

P’@ o gfﬁ =

Model _ Model Distributed
Training Code | Logica I.Mdl. . QDitihthdl Training Code

o 0%
IMJ\FQLWf(xJ gx)] §l > &

Modat efq valence Check Distributed Model
Algebra Expression Algebra Expression

e Extract DFGs from logical and distributed (1) and (6)

* Symbolize DFGs from concrete tensors (3) (4) using lineage metadata
(2) to track dependencies between logical and distributed

* Check equivalence using SMT solver (5)

Symbolic DFGs

* Construct manually DFG that represents the logical and distributed
model which represent the forward and backward pass

* Define manually formal definition of operators in DNN frameworks

* Lineage: Tracks how tensors are related between single-device and
distributed tensors

Lineage

f". - ‘ -1"‘\

K s A

I %
unparallelized '.% [s:. N:1/2)

[

(s: W v:1) S/
r parallelized |,
4

)
:\‘ﬁ!**- t -_r..--:
ar; P, o1 e (s:v:172)

(S: gy V1) %1‘ .-

-» . B

Shape reduction

C1,1 = a1 - 51,1 +a- b2,1 +a3- 53,1

C22 =4az21 - 51,2 +dzz - bz,z +dz3 - 3?3,2

dyq Qqp A3 by Bys bys Ciq1 Ci2 Cq3
yq9 8y, 8y3 b,y By bys| = |Cuq Cas Cos
Q31 Q35 Q33 by B35 bjs C31 C32 Cj3

Figure 5. DNN operator MatMul: different output elements ¢; ; and
c2,2 are calculated using the same function but on different inputs.

e Operating on per-element values in tensor is expensive

* DNN operators have the SIMD (Single Instruction, Multiple Data)
property, apply same computation across different data elements

Minimum shapes

e Shape alignment: reshape (M,N) to (M,P,Q) where N = PxQ

* Semantic intact: avoid reducing shape to 1 to avoid incorrectness in
matmul

11

Stage-Parallel Verification

D .- .- . ‘ i
- S AN V4

* Divide model into multiple stages and verify them in parallel

* Each stage consists of aligned subgraphs from single-device and
distributed graphs, where each stage’s boundary is defined as tensors
with lineage information

12

Implementation

* 6000 lines of code in Python
* Built on nnScaler, a distributed training framework from Microsoft

* Builds the single-device and distributed plans from generated IR
graphs in nnScaler
* Tensor lineage is built using nnScaler’s indexing metadata and source

code

13

Evaluation (Real-world models)

Exp. ID Model Layers DP TP PP NM

L1 Llama3-8B 32 512 1 1 1
L2 Llama3-70B 80 16 8 4 32
L3 [lama3-405B 126 64 8 16 16
D1 DS-V3-16B 27 16 4 2 16
D2 DS-V3-236B 60 16 8 4 16
D3 DS-V3-671B 61 32 8 8 16

Table 2. Evaluated real-world large models.

L1 L2 L3 DI D2 D3

Solver Parallelism 30 30 4 30 16 8
End-to-end Time 0.5h 7.5h 47h 0.5h 3.5h 31h

Table 3. Verification time for the evaluated models.

Evaluation (Setup)

e Dataflow graphs generated from machines with 4 A6000 GPUs
e Execution plans scaling up to 8192 GPUs

15

Evaluation (Scalability)

Bl topological sorting B shape reduction solving stage-parallel verification =~ —@— Total

64

— @ .

128

. .___.o—)-'—"-)—‘_——"\“\. .
W 64, 64
64
16 16 16
il 15‘1 ‘ ‘ L4j L4l Lﬂ. L
B l
0 1 2 3 4 5 02 1902 17928 2 177816 32 64 128

512 1024 2048 4096 4 4096 8192 16384 56 1024 4096 8192

Time(s)
w
[}

(a) Z3 random seed (b) Global batch size (¢) Hidden dimension size (d) Sequence length (e) Attention heads

———— T T—— 1024 14096
64 Jes / o / 2048 / 512 /
iy - 512- 128
”“ 1161.”[“1[[[SSTIIEFRAN
2 4 8 16 4 8 32 2 8 16 32 64 2 4 8 16 32 1 2 4 8

(h) Data parallelism (i) Micro batches (j) Tensor parallelism

Time(s)

(f) Pipeline parallelism (g) Layers
Figure 7. TRAINVERIFY’s performance trends regarding different training configurations. The y-axes use a log, scale. Bars indicate the time

breakdown by component, while lines represent the end-to-end verification time.

Evaluation (Scalability)

—&— parallel solving, max fork = 30 —@— sequential solving

800,
7600 "
@

2 400
=200,

U i)] ' . . . - : : i * N
512 1024 2048 4096 102% 409° @192 1638% 128 56 1024 4096 9192

_-'—F___' et
—— — - — ——a

(a) gbs (b) hidden (¢) seqlen

Figure 8. Verification time with vs. without stage parallelism.

17

Evaluation (Bugs eliminated)

* Incorrect communication operators
* Incorrect device assignment

* Incorrect partitioning

* Incorrect scaling

* Incorrect pipeline scheduling

* First four bugs are completely eliminated in TrainVerify, for the 5t
bug, TrainVerify eliminates through early data dependency analysis

18

Evaluation (Bugs eliminated)

(=]
1

Bl MegatronlM
Bl DeepSpeed
nnScaler

B o

comm. rank comp. scaling sched.
Category

Figure 9. Reproduced incorrect parallelization cases.

IS
|

of cases

J
]

=]
I

* The bugs are reproduced in nnScaler, a machine learning training
framework developed by Microsoft Research

19

Evaluation (New bugs)

* C1: Sharding a non-partitionable dimension
* C2: Dangling tensors in backward pass

20

Limitations

* Heavy reliance on graph-based execution plans
e Shape reduction assumes linearity on DNN operators
* Lineage information might be needed to be added manually

21

Conclusion

* Silent errors exist in many distributed training frameworks which are
difficult to detect using existing work

* TrainVerify argues using the generated graphs, these errors can be
exposed by verifying their equivalence

* TrainVerify scales to large models and exposes 14 old bugs and 2 new
categories of bugs in machine learning training frameworks

22

