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Enabling large models through scaling that are prone
to silent errors
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Example: Missing all-reduce (Megatron-LM)

LinearWithFrozenWeight backward fix when TP > 1, bug leads to non-decreasing loss

def backward(ctx, grad output):
(weight,) = ctx.saved tensors
grad input = grad output.matmul(weight)

return grad _input, None, None

it ctx.allreduce dgrad:

H

# All-reduce. Note: here async and sync are effectively the same.

torch.distributed.all reduce(grad input, group=get tensor model parallel group())

return grad input, None, None, None

Detecting when to do the all-reduce is difficult when manually
looking through large ml-systems codebase



Silent bugs are tricky since they are subtle

Runtime recovery

CheckFreq [FAST ‘21], Varuna [EuroSys ‘22], GEMINI [SOSP ‘23], Oobleck [SOSP ‘23], Bamboo [NSDI ‘23],
ReCycle [SOSP 24]

@ Fault-tolerant to failures Position: Expose silent errors before
@ Relies on explicit error signals deployment

Testing frameworks

DeepXplore [SOSP ‘17], DeepTest [ICSE ‘18], Eagle [ICSE 22], NNSmith [ASPLOS 23], MLIRSmith [ASE
‘23], PolyJuice [OOPSLA “24]

@ Detects many bugs Position: Guarantee absence of errors in
@ No guarantee of absence of bugs pipelines



Developers approach in debugging is ad-hoc

Examine intermediate tensor values in the entire huge code space manually

attention.py Optimizer
print(...)

=S

result = hlo.reshape(result, (n_seqs,
n_active tokens, hidden size))

rint(...
P ( ) [ Scheduling

Ne=s

@ Numerous amount of phases

@ Hard to differentiate correct and wrong tensors due to
floating-point round-off errors

@ Tedious to manually piece tensors on multiple devices to
match single on




Expose silent errors without explicit signals

logical graph parallelized graph
GPUO: DPO,TPO | GPUIL: DP0,TP1 | GPU2: DPL,TPO | GPU3: DP1,TP1

def training code gpu3():
model tp group = dist.new_group (ranks=[2,3])

o ... B upstream model code
gy3 =
w3 = ... b
gx3 = gy3.matmul {w3}o

9 dist.all_reduce (gx3,group=mode l_tp_grnup)e
. # downstream model code




TrainVerify Workflow
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e Extract DFGs from logical and distributed (1) and (6)

* Symbolize DFGs from concrete tensors (3) (4) using lineage metadata
(2) to track dependencies between logical and distributed

* Check equivalence using SMT solver (5)



Symbolic DFGs

* Construct manually DFG that represents the logical and distributed
model which represent the forward and backward pass

* Define manually formal definition of operators in DNN frameworks

* Lineage: Tracks how tensors are related between single-device and
distributed tensors



Lineage
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Shape reduction

C1,1 = a1 - 51,1 +a- b2,1 +a3- 53,1
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Figure 5. DNN operator MatMul: different output elements ¢; ; and
c2,2 are calculated using the same function but on different inputs.

e Operating on per-element values in tensor is expensive

* DNN operators have the SIMD (Single Instruction, Multiple Data)
property, apply same computation across different data elements



Minimum shapes

e Shape alignment: reshape (M,N) to (M,P,Q) where N = PxQ

* Semantic intact: avoid reducing shape to 1 to avoid incorrectness in
matmul
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Stage-Parallel Verification

D .- .- . ‘ i
- S AN V4

* Divide model into multiple stages and verify them in parallel

* Each stage consists of aligned subgraphs from single-device and
distributed graphs, where each stage’s boundary is defined as tensors
with lineage information
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Implementation

* 6000 lines of code in Python
* Built on nnScaler, a distributed training framework from Microsoft

* Builds the single-device and distributed plans from generated IR
graphs in nnScaler
* Tensor lineage is built using nnScaler’s indexing metadata and source

code
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Evaluation (Real-world models)

Exp. ID Model Layers DP TP PP NM

L1 Llama3-8B 32 512 1 1 1
L2 Llama3-70B 80 16 8 4 32
L3 [lama3-405B 126 64 8 16 16
D1 DS-V3-16B 27 16 4 2 16
D2 DS-V3-236B 60 16 8 4 16
D3 DS-V3-671B 61 32 8 8 16

Table 2. Evaluated real-world large models.

L1 L2 L3 DI D2 D3

Solver Parallelism 30 30 4 30 16 8
End-to-end Time 0.5h 7.5h 47h 0.5h 3.5h 31h

Table 3. Verification time for the evaluated models.




Evaluation (Setup)

e Dataflow graphs generated from machines with 4 A6000 GPUs
e Execution plans scaling up to 8192 GPUs
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Evaluation (Scalability)
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Evaluation (Scalability)
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Figure 8. Verification time with vs. without stage parallelism.
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Evaluation (Bugs eliminated)

* Incorrect communication operators
* Incorrect device assignment

* Incorrect partitioning

* Incorrect scaling

* Incorrect pipeline scheduling

* First four bugs are completely eliminated in TrainVerify, for the 5t
bug, TrainVerify eliminates through early data dependency analysis
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Evaluation (Bugs eliminated)
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* The bugs are reproduced in nnScaler, a machine learning training
framework developed by Microsoft Research
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Evaluation (New bugs)

* C1: Sharding a non-partitionable dimension
* C2: Dangling tensors in backward pass
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Limitations

* Heavy reliance on graph-based execution plans
e Shape reduction assumes linearity on DNN operators
* Lineage information might be needed to be added manually
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Conclusion

* Silent errors exist in many distributed training frameworks which are
difficult to detect using existing work

* TrainVerify argues using the generated graphs, these errors can be
exposed by verifying their equivalence

* TrainVerify scales to large models and exposes 14 old bugs and 2 new
categories of bugs in machine learning training frameworks
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