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Abstract—Identity and Access Management (IAM) is an access
control service employed within cloud platforms. Customers must
configure IAM to establish secure access control rules for their
cloud organizations. However, IAM misconfigurations can be
exploited to conduct Privilege Escalation (PE) attacks, resulting
in significant financial losses. Consequently, addressing these PEs
is crucial for improving security assurance for cloud customers.
Nevertheless, the area of repairing IAM PEs due to IAM mis-
configurations is relatively underexplored. To our knowledge, the
only existing IAM repair tool called IAM-Deescalate focuses
on a limited number of IAM PE patterns, indicating the potential
for further enhancements.

We propose a novel IAM Privilege Escalation Repair Engine
called IAMPERE that efficiently generates an approximately
minimal patch for repairing a broader range of IAM PEs. To
achieve this, we first formulate the IAM repair problem into a
MaxSAT problem. Despite the remarkable success of modern
MaxSAT solvers, their scalability for solving complex repair
problems remains a challenge due to the state explosion. To
improve scalability, we employ deep learning to prune the search
space. Specifically, we apply a carefully designed GNN model
to generate an intermediate patch that is relatively small, but
not necessarily minimal. We then apply a MaxSAT solver to
search for a minimum repair within the space defined by the
intermediate patch, as the final approximately minimum patch.
Experimental results on both synthesized and real-world IAM
misconfigurations show that, compared to IAM-Deescalate,
IAMPERE repairs a significantly larger number of IAM miscon-
figurations with markedly smaller patch sizes.

Index Terms—Cloud Access Control, MaxSAT, Graph Neural
Networks

I. INTRODUCTION

IAM [1], or Identity and Access Management, is an access
control service utilized within cloud platforms. Its purpose is
to securely manage access to resources based on a customer-
specified IAM configuration, which contains access control
rules for their cloud organization. An IAM configuration com-
prises two components: entities (such as users, services like
Amazon EC2 instances, and roles representing job functions,
responsibilities, and privileges within an organization) and
permissions which refer to privileges of performing operations.
When a service request is made and an IAM configuration
is provided, IAM can determine whether the request com-
plies with or violates the configuration, subsequently deciding
whether to grant or deny access.

Maintaining correct IAM configurations is essential for
robust cloud access control, ensuring that only authorized
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users and applications can access sensitive data and resources.
Incorrect IAM configurations, namely IAM misconfigurations,
can result in severe security consequences, including data
breaches, denial of service attacks, and resource hijacking [2]–
[6], leading to substantial financial losses globally [7]. IAM
PE [8]–[10] is a type of attack that targets cloud access control
systems by exploiting vulnerabilities within IAM, allowing
attackers to gain extra permissions for carrying out sensitive
operations or accessing confidential data. A prevalent method
for achieving IAM PE involves exploiting IAM misconfigura-
tions, which enable attackers to modify the configuration and
subsequently obtain additional sensitive permissions through
the modified configuration, posing a significant risk to the
organization’s security posture.

Over the past few years, there has been a notable surge in re-
search on detecting and verifying IAM PEs [8], [11]–[16]. TAC
[15], a recently proposed permission flow graph based IAM
detector, focuses on detecting transitive IAM PEs where at-
tackers can indirectly obtain sensitive permissions through any
intermediate entities. Moreover, TAC proposes IAMVulGen,
a generator for randomly generating IAM misconfigurations
using a large entity and permission space with diverse types,
manually identified from AWS official documentations [1],
[17], [18] and studies [8]–[10], [19] on IAM PEs.

While there has been a considerable rise in research
focused on detecting and verifying IAM misconfigura-
tions, the area of repairing IAM misconfigurations remains
relatively underexplored. To the best of our knowledge,
IAM-Deescalate [20] is the only existing tool capable of
repairing PEs in IAM misconfigurations. IAM-Deescalate
utilizes the graph modeling approach of an IAM PE detector
called PMapper [13], where each node in the graph represents
a user/role, and each edge represents if a user/role can be
authenticated as another user/role. A PE is represented as a
path from a non-admin user to an admin user. Consequently,
repairing PEs in an IAM misconfiguration is equivalent to
breaking PE paths in the modeled graph.
IAM-Deescalate has four key limitations. First, its

graph modeling primarily focuses on representing authenti-
cations between users and roles, rendering it incapable of
repairing potential PEs through non-authentication strategies,
such as changing the default version of IAM policies. Sec-
ond, it overlooks the possibility of the transitive PEs where
attackers can obtain sensitive permissions through entity types
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(a) IAM misconfigration.
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(b) PE 1: transitive PE.
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Fig. 1: (a) shows an IAM misconfiguration example having three user entities, three user group entities, and five permissions
including Perm A allowing to change the password of User C, Perm B allowing to add User B to Group C, and Perm
C allowing to add User B to Group A. Each connection between a user entity and a user group entity represents that the user
is in the user group. Note that users in a user group can obtain all permissions of the user group. Each connection between an
entity and a permission represents that the permission is directly assigned to the entity. We assume that User B is controlled
by an attacker and Perm E is the sensitive permission the attacker targets to obtain. (b) and (c) show two possible PEs for
an attacker to obtain Perm E. (d) shows a valid but non-optimal repair example of the IAM misconfiguration changing the
permission assignment of User A, which is unrelated to the two possible PEs. (e) shows an optimal repair example.

beyond admin users, such as services and non-admin users.
Third, it does not support repair operations beyond revoking
permissions from user/role, such as removing a user from a
user group. Lastly, its repair objective is solely to identify a
patch, rather than reducing the identified patch or even finding
a minimum patch.

To address all of these limitations, we introduce a more
comprehensive and efficient approach called IAMPERE for
repairing a broader range of IAM PEs, using an approxi-
mately minimum patch containing two kinds of repair op-
erations. Drawing inspiration from TAC, we initially model
IAM misconfigurations as a reduced permission flow graph
(PFG), which takes into account the entities and direct/indirect
permission assignments in IAM configurations from a more
general and concise perspective. Leveraging the simplified
PFG based IAM modeling, we encode the repair problem into
a MaxSAT problem via model checking technique.

Despite the remarkable success of modern MaxSAT solvers,
their scalability for solving complex repair problems remains a
challenge due to the state explosion. To enhance the scalability
of MaxSAT solving, we utilize GNN to prune the search space
for the solver. Specifically, a carefully designed GNN model
is trained to learn a good but imperfect patch, referred to as
the intermediate patch. The MaxSAT solver then refines the
intermediate patch into an approximately minimum patch. As
a result, the search space for the MaxSAT solver is reduced
to a smaller space defined by the intermediate patch.

We evaluate IAMPERE on two IAM misconfiguration
datasets: Test-A and Test-B. Test-A contains 1,000
randomly synthesized large-scale IAM misconfigurations with
PE issues by IAMVulGen, including hundreds of entities and
tens of thousands of permissions. Test-B contains two real-
world IAM misconfigurations with PEs collected from a US-
based cloud security startup.

The experimental results on Test-A show that
IAMPERE is able to repair 57.6% of the IAM
misconfigurations within the time limit of 600 seconds,
while IAM-Deescalate can only repair 21.6%. In

addition, IAMPERE generates 145 more small patches (i.e.,
relative patch size is less than 0.2) than IAM-Deescalate.
Moreover, our ablation study shows that our GNN assisted
MaxSAT repair approach significantly outperforms the
pure MaxSAT repair approach, repairing 24.1% more
IAM misconfigurations. The results on Text-B show
that IAMPERE successfully repairs both real-world IAM
misconfigurations within the time limit of 2 hours, while
IAM-Deescalate fails on both. The contributions of our
paper are:
• Problem Formulation. The problem of repairing for

IAM PEs due to misconfigurations is formulated into a
MaxSAT problem.

• Problem Solving. GNN is applied to improve the scala-
bility of solving the formulated MaxSAT problem.

• Implementation. IAMPERE is implemented as a proto-
type for AWS IAM, which is available at https://github.
com/githubhuyang/iampere.

II. MOTIVATION

PE in IAM [8]–[10] involves exploiting design flaws to
gain unauthorized access to perform sensitive operations or
access confidential data and resources. A misconfigured IAM
could allow an attacker to modify its configuration, granting
them additional, sensitive permissions. This paper focuses on
PEs resulting from IAM misconfigurations. Repairing IAM
misconfigurations presents a significant challenge due to three
primary reasons.

First, IAM misconfigurations can potentially be exploited
to perform transitive PEs. IAM configurations can be intri-
cate, including hundreds or even thousands of entities and
permissions, and numerous types of relationships among them.
Given the complex semantics of the relations among entities
and permissions, numerous ways exist for entities to acquire
additional permissions. These can be combined in ways that
grant an entity (controlled by the attacker) with sensitive
permissions, resulting in a transitive PE. For example, Fig-
ure 1b shows a transitive PE due to the IAM misconfiguration

https://github.com/githubhuyang/iampere
https://github.com/githubhuyang/iampere


example shown in Figure 1a. In the PE, the attacker controls
User B to apply Perm C to become a member of Group A,
obtain the additional permission Perm A through Group A
(users in a user group can access all permissions of the group),
then apply Perm A to change the password of User C to
control User C, and finally obtain the sensitive permission
Perm E through Group C to which User C belongs.

Second, an IAM misconfiguration may lead to multiple
PEs, and a valid repair should eliminate all of these PEs.
For example, Figure 1c shows another possible PE due to
the misconfiguration example, where the attacker controls
User B to obtain Perm B through Group B to which
User B belongs, applies Perm C to become a member of
Group C, and finally obtains the sensitive permission Perm
E through Group C. Figure 1d shows a valid repair of the
misconfiguration example which removes Perm B and Perm
C from Group B, eliminating both illustrated PEs shown in
Figure 1b and Figure 1c.

Third, an optimal repair should make minimal changes to
the semantics of the original IAM configuration, avoiding
any alterations to the semantics of IAM configurations that
are irrelevant to PEs. For instance, the optimal repair of the
misconfiguration example shown in Figure 1a should seman-
tically revoke Perm B and Perm C from User B, without
affecting the permission assignments of other entities. The
repair in Figure 1d is not an optimal repair, as it inadvertently
revokes Perm C from User A, who is unrelated to any PE.
Figure 1e shows an optimal repair which removes User B
from Group B and assigns Perm D to User B.

To address these three challenges, we introduce IAMPERE,
an approach that combines MaxSAT solving with GNN to
generate near-optimal repairs for IAM misconfigurations.

III. BACKGROUND

In this section, we briefly introduce GNNs and IAM PEs.
A. Basics of GNNs

GNNs [21], [22] are a class of neural network archi-
tectures designed to work with graph data. They typically
employ a recursive neighborhood aggregation scheme known
as message passing [23]. GNNs accept graphs as input, with
nodes containing node features and edges containing edge
features. The output consists of node or edge embeddings for
each node or edge, respectively. To create node embeddings,
GNNs iteratively update the feature vector of each node based
on its neighbors. In each iteration, a message-passing layer
processes the input graph and produces an updated graph with
updated node feature vectors. Traditional GNN models [23]–
[25] often use multiple message-passing layers to facilitate
iterative updates. Edge embeddings are generally generated
using node embeddings of source and sink nodes within the
edge, allowing GNNs to effectively capture the graph structure.
B. Basics of IAM PEs

Hu et al. [15] provide detailed definitions and formalizations
for IAM configurations and PEs. Here, we offer a simplified
and generalized summary of these concepts. We use a sim-
plified version of a real-world IAM misconfiguration as our
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Fig. 2: The relational representation of our illustrative IAM
misconfiguration derived from a real-world IAM PE in 2019.

illustrative example. This misconfiguration led to a significant
real-world IAM PE incident in 2019 [2], which resulted in a
breach of approximately 100 million credit card records from
a US-based financial institution.

1) The Relational Representation of IAM configurations:
An IAM configuration consists of two components: entities
and permissions. An entity represents either a subject or a role
in an IAM configuration. Subjects including users, user groups
and services can actively perform actions. Roles are created to
represent job functions, responsibilities, and privileges within
an organization. The entities controlled by the attackers are
called compromised entities.

Permissions refer to privileges of performing operations.
There are three kinds of permissions that are related to IAM
PEs, including the target permissions which are the sensitive
permissions the attacker targets to obtain; and two identified
permission types called Type-I and Type-II permissions
that are utilized by the compromised entity to possibly ob-
tain the target permission. A Type-I permission allows all
permissions of one entity e1 to be automatically assigned to
another entity e2. Therefore, if a compromised entity u has a
Type-I permission, u can apply the permission to make e2
inherit all permissions of e1. A Type-II permission allows
to directly assign a Type-I or target permission (denoted as
p) to an entity e. Therefore, if a compromised entity u has a
Type-II permission, it can apply the permission, enabling e
to acquire p. For example, the permission, that adds a user to a
user group in order to make all permissions of the user group
assigned to the user, is a Type-I permission. The permission
attaching an IAM policy to a user is a Type-II permission,
as it directly assigns each permission in the policy to the user.

There are two kinds of relations in IAM configurations:
the entity-permission relations and the entity-entity relations.
An entity-permission relation represents which permissions are
directly assigned to which entities. In IAM configurations,
permissions can be directly assigned to users, user groups and
roles. The entity-entity relations can be manually summarized
from AWS documentations and relevant studies [8]–[10], [17],
[19]. For example, the Service-Role and User-Role
relations represent services and users assuming roles (i.e.,
becoming members of roles), respectively. The User-Group
relation represents users are in user groups.

The relational representation of an IAM configuration is a
multi-relation graph which includes entities and permissions
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Fig. 3: The PFG initially converted from the relational representation of our illustrative IAM misconfiguration (a), the semantic
representation of our illustrative example which is the PFG reaching to the fix point iteration w.r.t. permission flow function (b),
and the PFG representing our illustrative IAM PE (c). Enabled permission flows are annotated in green; disabled permission
flows are in red; the target permission (i.e., Perm 1) and compromised entity (i.e., Service 1) are in orange.

as its nodes and relations as its undirected edges. Figure 2
shows the relational representation of our illustrative IAM
misconfiguration, including six entities (Group 1, User 1,
User 2, Service 1, Role 1 and Role 2) and four
permissions (Perm 1, Perm 2, Perm 3 and Perm 4).
There are five undirected edges representing three entity-entity
relations: User-Group, User-Role, and Service-Role
relations, meaning that User 1 / User 2 is in Group
1, User 1 / User 2 is the member of Role 1 / Role
2 respectively, and Service 1 assumes Role 2. There
are five undirected edges representing two entity-permission
relations: Role-Perm and Group-Perm relations, meaning
that Perm 1 and Perm 2 are directly assigned to Role 1,
Perm 3 and Perm 4 are directly assigned to Role 2, and
Perm 2 is directly assigned to Group 1.

2) The Permission Flow Graph: Note that an entity in an
IAM configuration can also obtain permissions in indirect
ways. For example, all permissions assigned to a role can
be indirectly assigned to a user who assumes the role; all
permissions assigned to a user group can be indirectly assigned
to a user in the user group. For the illustrative example, since
Perm 2 is directly assigned to Group 1, users (i.e., User
1 and User 2) in Group 1 can indirectly obtain Perm 2.

A permission flow is proposed to represent an indirect per-
mission assignment from one entity to another. Each permis-
sion flow has a flow state representing whether the permission
flow is currently enabled or disabled. If a permission flow from
entity e1 to entity e2 is enabled, all permissions assigned to
e1 can be automatically assigned to e2; otherwise (i.e., the
permission flow state is disabled), the permissions cannot be
automatically assigned.

A permission flow graph (PFG) is proposed to represent
how permissions are directly or indirectly assigned to en-
tities, which includes entities as its nodes (annotated with
permissions assigned to the entities) and permission flows
as its edges. Formally, a PFG is defined as a tuple G =
(E,F,A,W), where E is the entity space; F ⊆ E × E is
a set of permission flows; A : E 7→ 2P is a permission
assignment function which maps an entity to the permission
space P containing Type-I, Type-II and target permis-
sions; W : F 7→ {true,false} is a concrete flow state
function which outputs whether a permission flow is currently

enabled (denoted as true) or disabled (denoted as false).
3) The Semantic Representation of IAM configurations:

The semantic representation is proposed to discover transitive
IAM PEs. There are two steps to convert a relational represen-
tation of an IAM configuration into a semantic representation.
Step 1: Converting the relational representation to a PFG.
To create the semantic representation of an IAM configuration,
the first step is to convert its relational representation into a
PFG. The nodes in the converted PFG are simply the entities
in the relational representation, initially annotated with the
directly assigned permissions. To obtain the PFG, the main
task is to add edges among the entities for both enabled and
disabled permission flows.

The enabled permission flow edges are added based on the
semantics of relevant entity-entity relations in the configura-
tion. Figure 3a shows five added enabled permission flows in
the PFG converted from the relational representation of the
illustrative example in Figure 2. For example, as introduced
above, users in the user group can obtain all the permissions
assigned to the group; since there is an edge between Group
1 and User 1 / User 2 in the relational representation
denoting that User 1 / User 2 is in Group 1, an enabled
permission flow is added from Group 1 to User 1 / User
2. Note that while all entity-entity relations are converted into
enabled permission flow edges in the illustrative example, it
is possible that some entity-entity relations do not convey any
information about permission flows, and therefore cannot be
transformed into enabled permission flow edges.

The disabled permission flow edges are added based on the
semantics of each Type-I permission in the configuration
which allows to enable a permission flow from one entity to
another. The Type-I permissions are modeled as disabled
permission flows which can be enabled in the future, when a
compromised entity obtains and applies them. For example,
Perm 3 is the only Type-I permission in the illustrative
example. Since Perm 3 allows Service 1 to assume Role
1, a disabled permission flow edge is added from Role 1 to
Service 1, as shown in Figure 3a (highlighted in red). The
disabled edge can be enabled in the future if the compromised
entity applies Perm 3 to assume Role 1.
Step 2: The semantic representation. With the initially
converted PFG, the directly assigned permissions are indirectly



assigned to the corresponding entities according to the enabled
permission flows. For each entity e, all permissions of the
entities which have enabled permission flows to e are assigned
to e. This process iteratively continues until reaching to the
fixed point, meaning that no new permission is indirectly
assigned to any entity. The resulting PFG is the semantic
representation of the IAM configuration. Figure 3b shows the
semantic representation of our illustrative example, which is
the fixed point of the PFG in Figure 3a. The newly assigned
permissions through permission flows are highlighted in blue.

Formally, given a PFG Gr converted from a relational
representation, its semantic representation is the resulting PFG
Gs generated by performing the fixed point iteration on Gr

w.r.t. the permission flow function M. The permission flow
function M takes a PFG G = (E,F,A,W) as an input and
outputs a new PFG G′ = (E,F,A′,W) where

A′(e2) =
⋃

{(e1,e2)∈F |W(e1,e2)=true}

A(e1) ∪ A(e2)

meaning that, for each entity e2, all permissions of the entities
which have enabled permission flows to e2 are assigned to
e2. Since M is monotonic, we have Gs = M∗(Gr), where
M∗ refers to the fixed point iteration of M (i.e., M∗(Gr) =
Mn(Gr) s.t. Mn(Gr) =Mn−1(Gr)).

4) PEs due to IAM Misconfigurations: Given a set of
compromised entities and a set of target permissions, there
is a PE in an IAM configuration iff there exists at least
one compromised entity which obtains at least one target
permission based on the permissions initially assigned to all
compromised entities. We say that an IAM configuration is
safe if there is no PE in the IAM configuration.

Figure 3c shows a PFG representing a notable PE happened
in 2019 due to the illustrative IAM misconfiguration example
shown in Figure 2. In the PE example, the compromised
entity is an Amazon EC2 instance; the target permission
allows access to a sensitive S3 bucket, which contains mil-
lions of customers’ credit card information. In our illustrative
example, Service 1 corresponds to the compromised en-
tity and Perm 1 corresponds to the target permission. The
semantic of Perm 3 is that the entity who has Perm 3 can
let Service 1 assume Role 1. To obtain the permission
Perm 1, the compromised Service 1 applies Perm 3 to
assume Role 1, enabling the permission flow from Role
1 to Service 1. Since Role 1 is assigned Perm 1, the
compromised Service 1 is indirectly assigned the target
permission Perm 1.

IV. REPAIR ON IAM SEMANTIC REPRESENTATIONS

In this section, we illustrate how we repair on the semantic
representation of an IAM misconfiguration.

A. The Semantic Representation Reduction

Since our focus is only on the verification and repair for
IAM PEs, the semantic representation of IAM configurations
can be reduced to include only the entities and permission
flows that are relevant to the IAM PEs. Specifically, the entities
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Fig. 4: Two types of state transitions.

which never reaches to the compromised entities through en-
abled/disabled permission flows are removed, because the per-
missions of those entities can never be assigned to the compro-
mised entities. Correspondingly, the permission flows of those
removed entities are also removed. For example, consider
the semantic representation in Figure 3b, where Service
1 is the compromised entity. We notice that Group 1,
User 1 and User 2 can never reach Service 1 through
either enabled or disabled permission flows. Therefore, these
three entities and related permission flows are removed. The
resulting simplified semantic representation is shown in Figure
4a (on the left). We take the simplified representation as the
semantic representation of an IAM configuration for the rest
of this paper.

B. Safety Verification of IAM Configurations

To repair IAM misconfigurations, we need to verify if
a given IAM configuration is safe. We initially model the
problem as a Model Checking [26] problem and apply Fixed
Point Iteration (FPI) based approach to solve the problem. To
achieve this, we first model the behavior that the compromised
entities apply their permissions to modify an IAM configura-
tion as a finite-state machine. Each state in the machine is
represented as a PFG; and the initial state is the semantic
representation of the IAM configuration.

Each state transition in the machine is triggered by either 1)
applying permissions (i.e., Type-I or Type-II permission),
which is called Permission based Transition (PT); or 2)
indirectly assigning permissions through enabled permission
flows, which is called Flow based Transition (FT). PT models
the direct effect of applying a Type-I or Type-II per-
mission: the application of a Type-I permission is represented
as enabling a permission flow, while applying a Type-II
permission is depicted as directly assigning a permission to an
entity. FT models the side effect of applying a Type-I or Type-
II permission, where permissions can “flow” through enabled
permission flows. Figure 4a shows a PT of the illustrative
IAM configuration, where the state of the permission flow
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Fig. 6: The minimum patch for the semantic representation of
the illustrative IAM misconfiguration.

from Role 1 to Service 1 changes from disabled to
enabled, after the compromised entity Service 1 applies all
its permissions Perm 3 (which allows to enable a permission
flow from Role 1 to Service 1) and Perm 4. Figure 4b
shows a FT of the illustrative example, where the Service
1 obtains all permissions of Role 1 through the enabled
permission flow between them.

Given the finite-state machine, we check the safety property,
asserting that no error states (where a compromised entity has
at least one target permission) can be reached from the initial
state. To perform model checking in polynomial time, we take
advantage of the fact that both PT and FT are monotonic
transitions. According to fixed point theory [26], a global fixed
point state must exist w.r.t. both PT and FT, such that every
state in the machine can reach the global fixed point state
(through PTs or FTs). Specifically, due to the monotonicity of
state transitions, if the global fixed point state is not an error
state, then other states must not be error states, thus proving
the IAM configuration to be safe.

Figure 5a illustrates the computation of the global fixed
point state. Starting from the initial state G0, a local fixed
point state Gi w.r.t. PT is computed. Then, beginning with Gi,
a local fixed point state Gj w.r.t. FT is computed. The local
fixed points w.r.t. PT or FT are computed alternately until a
safe global fixed point state Gn is reached, in which case the
IAM configuration is proven to be safe; or an error state is
reached after k transitions (also names as bound), proving the
configuration to be unsafe within the bound k.

C. Repair on IAM Semantic Representations

To conduct a repair towards the semantic representation of
an IAM misconfiguration, we apply two kinds of repair oper-
ations: 1) revoking an enabled permission flow, (i.e., changing

Algorithm 1 BMC based repair with MaxSAT
Input: an IAM configuration s (semantic representation).
Output: a minimum patch tmin.
safe, bound← fpi verify(s)
if safe then

return s
end if
while ¬safe do

tmin = bmc maxsat repair(s, bound)
r = apply rop(s, tmin)
safe, bound← fpi verify(r)

end while
return tmin

the state of the permission flow from enabled to disabled),
and 2) revoking a permission assignment (i.e., removing an
assigned permission from an entity). The repair goal for the
semantic representation of an IAM misconfiguration is to find
a minimum patch containing a sequence of repair operations
which makes the IAM configuration safe. Formally, given an
IAM semantic representation s, we aim to find a minimum
patch tmin satisfying that

tmin = argmint|t| s.t. R(s, t) is safe

where R(s, t) outputs a new semantic representation by apply-
ing the patch t to the semantic representation s, and |t| refers to
the patch size (i.e., the number of repair operations in a patch).
Figure 6 shows the minimum patch for the illustrative IAM
misconfiguration example including a sequence of two repair
operations: 1) revoking the enabled permission flow from
Role 1 to Service 1, and 2) revoking the permission
Perm 3 assigned to Service 1.

To solve such repair problem, the common approach is to
translate it into a MaxSAT problem, which encodes repair
operations as soft constraints, and the safety verification of
the repair as hard constraints. The problem can then be solved
using a MaxSAT solver.

To verify the repair, directly encoding the finite state
machine of the FPI based safety verification (introduced in
the last section) to cover all possible states can lead to a
huge number of propositional constraints. To solve this issue,
bounded model checking (BMC) is often adopted to encode
the verification problem within a certain bound. However,
BMC can only check the bounded safety property, instead of
the real safety property. To tackle this, the general idea is to
use the FPI based verification to decide the initial bound and
then iteratively increase the bound until the minconfiguration
applied with the proposed minimum patch becomes truly safe.
The general algorithm of the BMC based repair using MaxSAT
is described in Algorithm 1.

In the following subsections, we first introduce the BMC
based safety verification including its finite state machine and
bounded safety property, and then illustrate how the MaxSAT
problem is encoded with hard and soft constraints.

1) The BMC based Safety Verification: The property that
BMC verifies is the bounded safty property, stating that the
given IAM configuration is verified to be safe within a certain
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Fig. 7: Operational semantic rules of state transitions. The
current state is denoted as (G,m) where G = (E,F,A,W),
and the next state is denoted as (G′,m′) where G′ =
(E,F,A′,W ′); U refers to a set of compromised entities;
N (e) refers to entities connecting to e through flows.

bound. Figure 5b shows the finite state machine of the BMC
based verification. There are still two types of state transitions
(i.e., PT and FT). Comparing to the FPI based verification,
the main change of the finite state machine in BMC based
verification is that the self-loop transition representing the
fixed point is converted into two transitions in which the
transition type alternates. To distinguish the two state transition
types, an extra boolean variable m is introduced, with the value
of true representing PT and false representing FT. The states
in the finite-state machine becomes the pair (G,m) of a PFG
G representing the current state of the IAM configuration and
m indicating the current transition type.

Figure 7 shows 10 operational semantic rules for defining
state transitions in the finite state machine. First, we define
three universal rules for both PTs and FTs:
Rule T1 defines that the state transition type needs to be
alternated when a fixed point w.r.t. PT or FT is reached.
Rule T2 states that a permission assigned to an entity in the
current state will be assigned to the entity in the next state.
Rule T3 defines that the state of enabled permission flows
will not change in the next state.

Next, we introduce four rules for PTs. Rules PT1 and
PT2, and rules PT3 and PT4 describe transitions triggered
by applying Type-I and Type-II permissions, respectively.
Detailed definitions are as follows:
Rule PT1 defines that if a compromised entity in the current
state has a Type-I permission which can enable a permission
flow, then the permission flow will be enabled in the next state.
Rule PT2 is the complement of Rule PT1, defining that, if
a permission flow is disabled and there is no compromised
entity having the permission to enable the flow in the current
state, the flow will still be disabled in the next state.

Rule PT3 defines that if a compromised entity has a Type-II
permission to directly assign a new permission to an entity,
the entity will obtain the new permission in the next state.
Rule PT4 is the complement of Rule 3, defining that if in
the current state, an entity is not assigned with a permission,
and there is no compromised entity which can directly assign
the permission to the entity with a Type-II permission, the
entity will not have the permission in the next state.

Last, we introduce three rules for FTs:
Rule FT1 describes how permissions are assigned through
enabled permission flows (w.r.t. the permission flow function).
Rule FT2 is the complement of Rule FT1, defining that if in
the current state, an entity is not assigned with a permission
and no other entities having the permission are connected to
the entity through enabled permission flows, then the entity
will not have the permission in the next state.
Rule FT3 defines that if a permission flow is disabled in the
current state, it will be disabled in the next state.

2) The MaxSAT Encoding: To generate hard constraints
encoding the BMC based safety verification, we first describe
how we encode the PFG in each state. We encode a PFG
with one boolean variable for each permission assignment
to represent whether an entity is assigned a permission, and
one boolean variable for each permission flow to represent
whether the permission flow is enabled. Next, we encode
state transitions by converting the operational semantic rules
in Figure 7 into boolean constraints. Finally, we encode the
bounded safety property with the conjunction of negated
boolean variables, one representing a permission assignment
between each compromised entity and each target permission.

To generate soft constraints, we encode each repair op-
eration with one boolean variable, representing whether a
permission assignment in the IAM misconfiguration persists in
the repaired configuration, or whether an enabled permission
flow in the IAM misconfiguration remains enabled in the
repaired configuration. It is important to note that minimizing
the number of repair operations is equivalent to satisfying
the maximum number of the encoded boolean variables, thus
transforming the problem into a MaxSAT problem.

V. IMPROVING MAXSAT SCALABILITY WITH GNN

The scalability of MaxSAT-based repair depends on the
solving capability of MaxSAT solvers, which can be limited
when facing large-scale practical problems due to the expo-
nential growth of the search space. To improve scalability,
we employ deep learning to prune the search space for the
MaxSAT solver. Given that IAM configurations are graph-
structured, we choose Graph Neural Networks (GNNs) to
enable more effective learning.

The overview of our GNN-assisted MaxSAT repair ap-
proach is illustrated in Figure 8, which consists of two phases:
the training phase and the testing phase. During the training
phase, we first collect training data samples using the MaxSAT
solver. Each data sample contains a graph representation
of an IAM misconfiguration and the corresponding minimal
patch, computed by the MaxSAT solver. A well-designed
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Fig. 9: The graph representation of an IAM configuration
which is the input of our GNN model.

GNN model is trained using supervised learning on these data
samples. The GNN model learns to predict the probability
of each repair operation appearing in a minimal patch, given
the graph representation of an IAM misconfiguration. Details
about the graph representation of IAM configurations and
the GNN learning are introduced in Subsection V-A and
Subsection V-B, respectively.

Based on repair operations sorted by their predicted proba-
bility in descending order, a good but imperfect patch called
an intermediate patch is generated. The MaxSAT solver then
takes this intermediate patch and undoes as many unnecessary
repair operations as possible, using a greedy algorithm to
refine the intermediate patch into an approximately minimal
patch. This transforms the repair problem into an easier
MaxSAT problem, which is defined as follows:

tmin = argmint|t| s.t. R(s, t) is safe ∧ t ⊆ titm.

where titm refers the intermediate patch. Therefore, the repair
operation search space for the MaxSAT solver is reduced
to a smaller search space defined by the intermediate patch.
Details about the intermediate patch generation is introduced
in Subsection V-C

A. The Graph Representation of an IAM configuration

We transform the semantic representation of an IAM con-
figuration into an input graph for our GNN model. To ensure
effective GNN learning, we strive to include all relevant
information from the IAM configuration within the graph. The
resulting graph representation consists of two node types and
six edge types, with each node/edge including its correspond-
ing type as its node/edge features.

Two node types are: nodes representing entities and nodes
representing permissions. Six edge types are: edges for enabled

permission flows, edges from permissions to assigned entities
(representing permission assignments), two edge types for
Type-I permissions, and two edge types for Type-II per-
missions. A Type-I permission, which enables a permission
flow, is depicted by one edge from the source entity of the
corresponding permission flow to the Type-I permission and
another edge from the sink entity to the Type-I permis-
sion. A Type-II permission, which allows for the direct
assignment of a permission to an entity, is represented by
one edge from the corresponding permission to the Type-II
permission and another edge from the corresponding entity to
the Type-II permission.

Figure 9 shows a converted graph of the semantic repre-
sentation of the illustrative example shown in Figure 4a (left).
The entities, permissions, permission assignments, and enabled
permission flows are directly converted. There is only one
Type-I permission Perm 3 which allows to enable a per-
mission flow form Role 1 to Service 1. Therefore, one
edge from Role 1 to Perm 3 and one edge from Service
1 to Perm 3 are added. There is only one Type-II per-
mission Perm 2, which allows to directly assign Perm 1 to
Role 1. Therefore, one edge from Perm 1 to Perm 2 and
one edge from Role 1 to Perm 2 are added.

B. The GNN Learning
Our goal is to use GNN to predict the probability of

each repair operation appearing in a minimum patch. As
discussed in Section IV-C, there are two types of repair
operations: revoking an enabled permission flow and revoking
a permission assignment. We map these operations to the
enabled permission flow edge and the permission assignment
edge in the input graph representation, respectively. Thus, the
problem becomes predicting the probability of each enabled
permission flow edge and each permission assignment edge.
To accomplish this, we construct a GNN model comprising six
Graph Attention Network layers [27] with graph normalization
[28] and skip connections [29] to generate edge embeddings
for each permission flow edge and permission assignment
edge. Using these edge embeddings, we apply a Multi-Layer
Perceptron with one hidden layer to predict the probabilities
of the corresponding edges. We employ the binary cross
entropy loss function as our loss function. Our GNN model is
implemented using Python 3.10, PyTorch 2.0.0, and PyTorch
Geometric 2.3.1 software packages.

C. The Intermediate Patch Generation with GNN predictions
Given an input IAM misconfiguration and a list of repair

operations sorted in descending order by probability as pre-
dicted by our GNN model, an intermediate patch is generated
by sequentially selecting a set number of top repair opera-
tions (with high probabilities) until the IAM misconfiguration
becomes safe. The overall algorithm is outlined in Algorithm
2. During each search round, a patch comprising the top k
repair operations is chosen and applied to the input IAM
misconfiguration. If the resulting configuration is confirmed
to be safe, the applied patch serves as the intermediate patch.
If not, another search round begins, featuring a new patch



Algorithm 2 The Intermediate Patch Generation
Input: an IAM configuration s (semantic representation)

a list of sorted repair operations α.
Output: an intermediate patch titm.
k = δ . δ is the incremental number of repair operations.
while k < size(α) do

titm = top rop(α, k)
ritm = apply rop(s, titm)
safe← fpi verify(ritm)
if safe then

return titm
end if
k = k + δ

end while
return α
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Fig. 10: The repair on the relational representation of the
illustrative IAM misconfiguration (for demonstration purposes,
we only display the part relevant to the repair). Figure (a)
illustrates the relational repair corresponding to the first repair
operation, which revokes an enabled permission flow from
Role 2 to Service 1. Figure (b) demonstrates the re-
lational repair corresponding to the second repair operation,
which revokes Perm 3 from Service 1.

containing the top k repair operations, where k is incremented
by a value of δ. This process continues until the repaired IAM
misconfiguration is verified to be safe. By default, k is set to
10% of the total number of possible repair operations.

VI. REPAIR ON IAM RELATIONAL REPRESENTATIONS

Since the relational representation of an IAM configuration
has the one-one mapping with the actual IAM configuration,
to repair the actual IAM configuration, we need to transfer
the patch on the semantic representation to the patch on
the relational representation. For the repair operation type
that revokes an enabled permission flow from entity e1 to
entity e2, we remove the edge between e1 and e2 in the
relational representation, and add edges between e2 and all
permissions assigned to e2 (in the semantic representation).
If entity e2 cannot be directly assigned permissions, we add
an intermediate Role entity, create one edge between entity
e2 and the Role entity, and add edges between the Role
entity and all permissions assigned to e2 (in the semantic
representation).

For instance, the first repair operation in the patch for
the illustrative IAM misconfiguration involves revoking the
permission flow from Role 2 to Service 1. Figure 10a

demonstrates the relational repair based on this operation. The
repair process starts by removing the edge between Role 2
and Service 1; it then adds the intermediate entity Role
3, as Service 1 cannot be directly assigned permissions;
next, it adds an edge between Service 1 and Role 3;
finally, it adds edges between Role 3 and Perm 3 as well as
Perm 4, which are assigned to Service 1 in the semantic
representation.

For the other repair operation type, which involves re-
voking an assigned permission from an entity, if the entity
can be directly assigned permissions, we simply remove the
edge between the permission and the entity in the relational
representation. Otherwise, we delete the edge between the
permission and the corresponding intermediate Role entity
in the relational representation. It is important to note that
the order of repair operations in the patch ensures that the
revoked permission is directly assigned to the entity, meaning
there must be an edge representing such direct permission
assignment in the relational representation.

For instance, the second repair operation in the patch for
the illustrative misconfiguration involves revoking permission
Perm 3 from Service 1. Figure 10b illustrates the rela-
tional repair based on this operation, which simply deletes the
edge between the intermediate entity Role 3 and Perm 3.

VII. EVALUATION
A. Experimental Setup

1) MaxSAT Solver: We apply the complete MaxSAT win-
ner in the Main track of MaxSAT Evaluation 2022 [30] called
CASHWMaxSAT-CorePlus as our MaxSAT solver.

2) Baselines: We adapt IAM-Deescalate [20], the
only existing IAM PE repair tool (to our knowledge),
as our baseline. Furthermore, we construct two vari-
ants of IAMPERE for conducting an ablation study:
IAMPERE-MO (MaxSAT Only), which exclusively em-
ploys the MaxSAT solver CASHWMaxSAT-CorePlus, and
IAMPERE-GO (GNN Only), which relies solely on GNN to
generate the intermediate patch as the final patch.

3) Datasets: To train and evaluate IAMPERE, we create
four datasets: a training set, a validation set, and two testing
sets, named Test-A and Test-B. For the construction of the
training and validation sets, we utilize IAMVulGen, proposed
by Hu et al. [15], which is an IAM PE task generator. We use
it to randomly generate 40,000 IAM misconfigurations with
PEs. We then apply IAMPERE-MO to obtain minimum patches
for these generated IAM misconfigurations. As a result, we
acquire 11,933 IAM misconfigurations with minimum patches
within the time limit. Each IAM misconfiguration contains
between 8 and 336 entities, 24 and 15,525 permissions, and
7 and 15,263 permission flows. We randomly select 90% of
these data samples to construct our training set and use the
remaining 10% to create our validation set. To construct the
testing set Test-A, we use IAMVulGen to randomly gen-
erate 1,000 IAM misconfigurations, each containing between
11 and 315 entities, 42 and 11,737 permissions, and 12 and
11,543 permission flows.
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Fig. 11: The effectiveness and efficiency of repair tools on Test-A. The cactus plots shows the number of IAM configurations
repaired by each tool under a specific relative patch size and time cost, respectively.

To construct Test-B, we gather five real-world IAM
configurations owned by cloud customers from a US-based
security startup. Our FPI-based model checking approach veri-
fies that two of them are misconfigurations. These two miscon-
figurations constitute Test-B, with one (named as Real-1)
comprising 251 entities, 2,826 permissions, and 27,939 per-
mission flows, and the other (named as Real-2) consisting
of 158 entities, 882 permissions, and 8,704 permission flows.
In adherence to the data security protocol established with the
startup and its clients, we are restricted from divulging specific
details about the two misconfigurations. However, it can be
shared that both misconfigurations comprise over 10 PEs, all
of which are transitive and have PE path lengths of at least
5. Clearly, these real-world misconfigurations pose significant
challenges for repair.

4) The Time Limit: Considering that repair problems are
typically challenging to solve, we set the time limit for solving
each repair problem in the training set, validation set and
Test-A to 600 seconds, which is double the maximum
time limit used in recent MaxSAT evaluations [30]–[32]. Due
to the complexity and limited number of real-world IAM
misconfigurations, we establish a time limit of two hours
(7,200 seconds) for solving each problem in Test-B.

5) Evaluation Metrics: The maximum patch containing all
repair operations (i.e., removing all permission assignments
and disabling all permission flows) repairs the IAM miscon-
figuration in a clearly non-meaningful way. Therefore, in our
evaluation, we consider a repair tool that provides a non-
maximum patch within the time limit as a valid repair case.

Following the convention in automated software repair, we
use repair rate (i.e., the percentage of IAM misconfigurations
repaired by the tool) and relative patch size (i.e., the size of the
generated patch divided by the size of the maximum patch)
to evaluate the effectiveness of a repair tool. We assess the
efficiency of a repair tool based on the time cost of each repair
generation.

6) Parameter Settings: For the GNN learning, we train the
model in 500 epochs using the AdamW optimizer [33] with
a learning rate of 10−4. For the intermediate patch generator
and the MaxSAT solver, we apply the default settings.

7) Platform: All experiments are done on a machine with a
AMD Ryzen Threadripper 3970X 32-Core Processor, 256GB
RAM, and one NVIDIA GeForce RTX 3060 GPU.

B. Research Questions

We aim to answer the following research questions:
• RQ1. How effectively and efficiently does IAMPERE per-

form on Test-A containing randomly generated IAM
misconfigurations?

• RQ2. How does IAMPERE perform on Test-B contain-
ing real-world IAM misconfigurations?

C. Experimental Results

1) Performance on Test-A: We apply the base-
line IAM-Deescalate, IAMPERE and its two variants
IAMPERE-MO and IAMPERE-GO on Test-A. Within the
time limit, IAMPERE repairs 576 IAM configurations with
the highest repair rate (57.6%) among all tools, followed
by IAMPERE-GO whose repair rate is 52.5%. The re-
pair rate of IAMPERE-MO is 33.5%, which is signifi-
cantly lower than IAMPERE and IAMPERE-GO. In addition,
IAM-Deescalate only repairs 216 configurations with the
lowest repair rate (21.6%).

The cactus plot in Figure 11a displays the number of
IAM configurations on Test-A repaired by each tool within
a specific relative patch size. We can observe that both
IAMPERE and IAMPERE-MO significantly improve upon
IAM-Deescalate in terms of patch size. For example, for
repaired configurations with a relative patch size less than
0.2, IAMPERE and IAMPERE-MO repair 145 and 118 more
configurations than IAM-Deescalate, respectively. More-
over, compared to the pure MaxSAT variant IAMPERE-MO,
IAMPERE not only repairs more configurations but also pro-
duces more small patches. Additionally, the performance of
IAMPERE-GO reveals that the size of the intermediate patches
generated by our GNN model is significantly smaller than
maximum patches when the number of repaired configurations
is small and gradually increases as the number of repaired
configurations rises. This demonstrates that our GNN model
effectively reduces the search space for the MaxSAT solver.



The cactus plot in Figure 11b displays the number of IAM
configurations in Test-A repaired by each tool within a spe-
cific time cost. We can observe that IAM-Deescalate has
a slight advantage for the first 169 configurations, repairing
them within a few seconds, but it is significantly outper-
formed by IAMPERE and its variants when the repair time
increases. Moreover, IAMPERE is consistently more efficient
than IAMPERE-MO. We can also observe that IAMPERE is
able to repair 220 more IAM misconfigurations exactly at the
time limit. This is because IAMPERE can return intermediate
patches learned by our GNN model as final patches when the
MaxSAT solver struggles. Additionally, the high performance
of IAMPERE-GO in terms of repair time cost demonstrates
that our GNN model inference for intermediate repairs is
highly efficient.

In summary, we conclude that our GNN-assisted MaxSAT
repair approach is both effective and efficient in repairing
synthesized IAM misconfigurations, achieving a high repair
rate and maintaining good patch quality.

2) Performance on Test-B: For the IAM misconfigu-
ration Real-1, IAMPERE takes 7,200 seconds to repair
the misconfiguration with the relative patch size of 0.889;
IAMPERE-GO takes 5,147 seconds to repair with the relative
patch size of 0.889; IAMPERE-MO and IAM-Deescalate
fail to repair within the time limit. For the IAM misconfigura-
tion Real-2, IAMPERE takes 1,190 seconds to successfully
repair the configuration with a relative patch size of 0.0048;
IAMPERE-GO takes 2,107 seconds to repair with a relative
patch size of 0.741; IAMPERE-MO takes 3,963 seconds to re-
pair with a relative patch size of 0.0048; IAM-Deescalate
fails to repair the configuration in the given time limit.

The experimental results highlight that solely relying on
MaxSAT for fixing real-world misconfigurations can be ex-
cessively time-consuming, sometimes even surpassing the al-
located time budget. Meanwhile, utilizing GNN independently
for these repairs does not significantly reduce the patch size.
However, a strategic combination of GNN and MaxSAT fa-
cilitates not only a reduction in time spent but also enables
the acquisition of smaller or even minimal patches. Overall,
the results indicate that IAMPERE is competitive in repairing
real-world IAM misconfigurations.

VIII. RELATED WORK

In addition to the only existing IAM repair tool
IAM-Deescalate, and the most recent IAM detector TAC,
recent research on the formal verification of cloud access con-
trol policies [16], [34], [35] is also relevant to our paper. The
AWS team has proposed ZELKOVA [35], which can formally
verify several basic security and availability properties of IAM
configurations (e.g., whether an arbitrary user can write to a
resource) by encoding the problems into Satisfiability Modulo
Theories (SMT) formulas. Block Public Access [34] is
built on top of ZELKOVA to formally verify access control
policies for Amazon Simple Storage Service (S3), ensuring
the policies only allow access to trusted entities. Beyond the
efforts from the AWS team, Ilia and Oded [16] have proposed

an SMT-based bounded model checking approach to formally
verify if an IAM configuration has a PE. These approaches
focus solely on analyzing and reasoning permissions defined in
policy documents, whereas IAMPERE also considers reasoning
about the relations among entities and permissions, providing
more useful information to reveal broader classes of IAM PEs.

IX. DISCUSSION

Our IAM repair approach is sound, ensuring that the patch
produced by IAMPERE is guaranteed to eliminate PEs in the
IAM misconfiguration. While IAMPERE aims to generate an
approximately minimum patch by leveraging GNN, it does not
guarantee the absolute minimum, which makes our approach
incomplete. Nonetheless, thanks to our well-designed GNN
architecture, informative graph representation and extensive
training, our experimental results show that the generated
patches are remarkably small. Furthermore, our research high-
lighted the substantial efficacy of GNN in facilitating MaxSAT
solving, indicating a breakthrough with a broader impact that
extends far beyond IAM PE repair. This innovation could
potentially enhance a wide range of MaxSAT applications, in-
cluding planning and scheduling [36]–[39], hardware/software
verification and repair [40]–[42], bioinformatics [43]–[45], etc.
Moreover, our work serves as a tangible demonstration of how
deep learning can be employed to bolster automated reasoning.

X. CONCLUSION

In this paper, we introduce IAMPERE, a comprehensive and
efficient approach designed to repair a wide range of IAM
PEs using an approximately minimal patch. We first formulate
the IAM repair problem as a MaxSAT problem, which is
inherently challenging. To improve the scalability of MaxSAT
solving, we employ GNNs to learn an intermediate patch that
is relatively small, though not necessarily minimal. We then
apply a MaxSAT solver to the intermediate patch, greedily
refining it into an approximately minimal patch. Experimental
results on both synthesized and real-world datasets demon-
strate that IAMPERE significantly outperforms the baseline in
terms of repair effectiveness and efficiency.
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