
SymMC: Approximate Model Enumeration and Counting Using
Symmetry Information for Alloy Specifications

Wenxi Wang

The University of Texas at Austin

Austin, Texas, USA

wenxiw@utexas.edu

Yang Hu

The University of Texas at Austin

Austin, Texas, USA

huyang@utexas.edu

Kenneth L. McMillan

The University of Texas at Austin

Austin, Texas, USA

kenmcm@cs.utexas.edu

Sarfraz Khurshid

The University of Texas at Austin

Austin, Texas, USA

khurshid@ece.utexas.edu

ABSTRACT
Specifying and analyzing critical properties of software systems

plays an important role in the development of reliable systems.

Alloy is a mature tool-set that provides a first-order relational logic

for writing specifications, and a fully automatic powerful backend

for analyzing the specifications. It has been widely applied in areas

including verification, security, and synthesis.

Symmetry breaking is a useful approach for pruning the search

space to efficiently check the satisfiability of combinatorial prob-

lems. As the backend solver of Alloy, Kodkod does the partial sym-

metry breaking (PaSB) for Alloy specifications.While full symmetry

breaking remains challenging to scale, a recent study showed that

Kodkod PaSB could significantly reduce the model counting time,

albeit at the cost of producing only partial model counts. However,

the desired term is either the isomorphic count under no symmetry

breaking, or the non-isomorphic models/count under full symmetry

breaking. This paper presents an approach called SymMC, which

utilizes the symmetry information to compute all the desired terms

for Alloy specifications. To make SymMC scalable, we propose ap-

proximate algorithms based on sampling to estimate the desired

terms. We show that our proposed estimators have consistency

and upper bound properties. To our knowledge, SymMC is the

first approach that automatically approximates non-isomorphic

model enumeration/counting for Alloy specifications. Thanks to

the non-isomorphic model counting, SymMC also provides the first

automatic quantification measurement on the solution space prun-

ing ability of Kodkod PaSB. Furthermore, empirical evaluations

show that SymMC provides a competitive isomorphic counting

approach for Alloy specifications compared to the state-of-the-art

model counters.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00

https://doi.org/10.1145/3540250.3549161

CCS CONCEPTS
• Software and its engineering→ Software verification; •The-
ory of computation→ Automated reasoning.

KEYWORDS
Symmetry Breaking, Permutation Sampling, Alloy specifications

ACM Reference Format:
Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid. 2022.

SymMC: Approximate Model Enumeration and Counting Using Symmetry

Information for Alloy Specifications. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’22), November 14–18, 2022, Singapore,
Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3540250.3549161

1 INTRODUCTION
Alloy [27] is a specification language combining first-order logic

with relational algebra. Alloy and its analyzer have been widely

used for complex system modeling in a variety of fields such as

security [2, 56], system analysis and verification [8, 28, 43], and

design [3, 6, 7]. In the backend, Alloy analyzer is supported by a

highly optimized constraint solver called Kodkod [54], which does

symmetry breaking at the problem domain level and efficiently

translates Alloy specifications into SAT formulas. To check the

satisfiability of Alloy specifications, Alloy analyzer calls its off-the-

shelf SAT solvers to solve the SAT formulas.

A symmetry is a permutation of atoms in a problem’s universe

that takes models of the problem to other models, and non-models

to other non-models. Kodkod performs static symmetry break-

ing where the symmetry breaking predicates (SBPs) [13] are pre-

generated and added to the original SAT formula. Unfortunately,

generating a full symmetry breaking predicate to make exactly one

representative per isomorphism class is NP-complete [13]. Regard-

ing this, Kodkod generates a partial SBP which is true of at least one
(typically more than one) representative per isomorphism class.

This paper focuses on addressing three challenging problems for

Alloy specifications by exploiting the Kodkod PaSB.

Non-Isomorphic Model Enumeration Non-isomorphic models

are often desirable because they amount to a significant computa-

tional save without reducing the effectiveness of achieving the goal.

For example, non-isomorphic test inputs save a significant amount

of time to test the program without reducing the code coverage. A

https://doi.org/10.1145/3540250.3549161
https://doi.org/10.1145/3540250.3549161
https://doi.org/10.1145/3540250.3549161

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

lot of work has been done to efficiently enumerate non-isomorphic

models in various kinds of areas such as test generation [32, 42, 59],

configurations of robotics [11, 34], and graphs [37, 41, 55]. To our

knowledge, there is only one existing tool called TestEra [29, 31, 35]

that utilizes Alloy to generate non-isomorphic test inputs for Java

programs. However, this approach has one limitation: it requires

users to manually add the symmetry breaking specification to real-

ize the full symmetry breaking for their Alloy specifications. Mo-

tivated by this, we aim to propose a fully automated approach to

enumerate non-isomorphic models for Alloy specifications without

requiring manual input from users.

QuantificationMeasurement of Kodkod Partial SBPs Kodkod
partial SBPs are often effective—they are often able to rule out a

large fraction of models from each isomorphism class. However,

the pruning ability of Kodkod partial SBPs is unpredictable, which

means that the partial SBPs can result in totally different ruled-out

fractions for different input problems. Shlyakhter et al. did some

initial measurements for the effectiveness of the partial SBPs applied

on only a few examples with the known number of isomorphism

classes [48]. However, to our knowledge, no work has been done

to automatically measure the effectiveness of Kodkod partial SBPs

for an arbitrary Alloy specification due to the difficulty of counting

the number of isomorphism classes of the specification. Regarding

this, we aim to automatically measure the pruning ability of the

applied Kodkod partial SBPs for an arbitrary Alloy specification, by

getting the non-isomorphic count for the specification.

Isomorphic Model Counting Model counting is a classical prob-

lem of computing the number of models for a given formula. Pro-
jected model counting [4] is a kind of model counting problemwhich

counts only the unique models with respect to designated variables.

Consider a simple SAT formula (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∨ ¬𝑥4), the pro-
jected model count over variables 𝑥1 and 𝑥2 is 3; over variables 𝑥1
and 𝑥4 is 4. There have been several recent works in doing model

counting for Alloy specifications [57, 60, 62]. The model count-

ing for Alloy specifications belongs to projected model counting,

which counts the number of satisfiable models of the translated SAT

formulas over only primary variables (i.e., the variables directly

encoding Alloy specification components) excluding auxiliary vari-

ables introduced during the translation. A recently published tool

called AlloyMC [62] has added off-the-shelf projected model coun-

ters to the Alloy backend. A recent study [60] found that Kodkod

partial SBPs can substantially reduce the counting time taken by

the-state-of-art model counters for counting satisfiable models of

Alloy specifications. However, the addition of partial SBPs means

that the reported counts are accurate only with respect to partial
symmetry breaking (PaSB). Indeed, it is the isomorphic count (i.e.,

the model count with no symmetry breaking) that is commonly

desirable. Inspired by the findings of the study, we aim to efficiently

get the isomorphic count for Alloy specifications by utilizing the

Kodkod partial SBPs.

We propose an automated tool called SymMC to solve all these

three challenging problems by solving two key technical problems:

the non-isomorphic model enumeration/counting and the isomor-

phic model counting for Alloy specifications. The two technical

problems are in general hard problems—they would quickly become

intractable as the number of all possible permutations in the input

problem increases substantially. Regarding this, the core idea inside

SymMC is to efficiently approximate the non-isomorphic models

and the isomorphic model count, by sampling the permutations

instead of considering all possible permutations.

We first convert the non-isomorphic model enumeration prob-

lem into a graph theory problem. The non-isomorphic models can

be over-approximated through the weakly connected components
of the converted graph which are constructed by the randomly

sampled permutations. Based on the formulation, we propose our

non-isomorphic model estimator and show that the estimator is able

to provide high approximation accuracy. The isomorphic counting

estimator is built upon the non-isomorphic model estimator. We for-

mulate the isomorphic counting problem into a statistical inference

problem. Based on the formulation, we then propose our isomorphic

counting estimator based on the simple random sampling. We prove

that both estimators provide the upper bound/over-approximation

of the count/enumeration and have consistency property. Finally,

we present two practical approximate algorithms of SymMC for

realizing the two estimators, respectively.

We evaluate SymMC mainly in two aspects: the approximation

efficiency and the approximation accuracy. To do the empirical

evaluation, we collect 110 Alloy specifications as our subjects from

four sources relating to a variety of real-world applications such as

security, protocols and test generation. For non-isomorphic model

approximation, experimental results show that SymMC success-

fully solves 73 subjects within the standard time limit of 5,000

seconds; for all those subjects, SymMC approximates with surpris-

ingly zero error rate. For quantification measurement of the Kodkod

partial SBP, SymMC found that its pruning ability is often effective

and even perfect in some subject types (e.g., n-Queen problems),

while its ability is sometimes very limited in other subjects (e.g.,

singly linked list data structure). For isomorphic model counting,

experimental results show that SymMC is more efficient than the

state-of-the-art exact counter GANAK [47] in 77.2% subjects and the

state-of-the-art approximate counter ApproxMC [51] in 79.5% sub-

jects; SymMC approximates with lower error rate than ApproxMC

in 95.6% subjects. The source code of SymMC is publicly available

at https://github.com/wenxiwang/SymMC-Tool.

The contributions of this paper are:

• Idea. We introduce the idea of utilizing symmetry informa-

tion and permutation sampling to approximate the non-

isomorphic model enumeration and isomorphic counting

for Alloy specifications.

• Approximate Non-isomorphic Enumeration. To our knowl-

edge, SymMC is the first to do automatic non-isomorphic

model enumeration for Alloy specifications.

• Quantification Measurement. SymMC provides an automatic

way of measuring the pruning ability of the Kodkod partial

SBPs for an arbitrary Alloy specification.

• Approximate Isomorphic Counting. We present an approx-

imate isomorphic counting algorithm based on sampling

which is competitive with state-of-the-art counters.

2 RELATEDWORK
For non-isomorphic model enumeration for Alloy specifications,

the most related tool is TestEra [29, 31, 35] which applies Alloy as

https://github.com/wenxiwang/SymMC-Tool

SymMC: Approximate Model Enumeration and Counting Using Symmetry Information for Alloy Specifications ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

1. sig Node { link: one Node }
2. pred Cyclic {
3. all n: Node | n.^link = Node
4. }
5. run Cyclic for 5 Node

Figure 1: The Alloy specification of the cyclic linked list.

its backend to enumerate non-isomorphic test inputs for Java pro-

grams with limited data structure types. TestEra requires users to

manually add domain-specific specifications as symmetry breaking

constraints to eliminate all the isomorphic models. It is shown in

the recent study [60] that the manually added domain-specific sym-

metry breaking constraints proposed by TestEra for six basic data

structures are able to do efficient full symmetry breaking. However,

to fully break the symmetries for even the classic data structures

(e.g., linked lists and binary search trees), it took the authors (i.e.,

the experts) a few hours to write the specification [30]. Not to

mention all kinds of complex domain-specific problems defined by

Alloy users. In general, the limitation of this approach is obvious—

it requires users to have enough domain knowledge and expert

knowledge in symmetry breaking to be able to manually write

the symmetry breaking constraints for their own domain-specific

problems. In contrast, by exploiting the symmetry information of

the specifications, SymMC is able to automatically approximate the

non-isomorphic models for arbitrary Alloy specifications, without

requiring any manual effort from the user side.

There are two recent works which consider doing model count-

ing with Alloy. Wang et al. in the study [60] of symmetry breaking

and model counting found that counting under Alloy partial sym-

metry breaking is much faster than counting under no symmetry

breaking, which shows a promising direction to improve the model

counting efficiency. However, using partial symmetry breaking

predicates creates a different counting problem, thus could intro-

duce bias to the original counting problem. Unfortunately, the study

did not attempt to address this issue. Inspired by the findings of

the study, SymMC aims to efficiently approximate the counts both

under no symmetry breaking (isomorphic counting) and under full

symmetry breaking (non-isomorphic counting) by enumerating

models under partial symmetry breaking. AlloyMC [62] is a tool

implementation which adds off-the-shelf model counters to the

Alloy backend and provides a GUI which invokes these counters to

get the count of the input Alloy specification under no symmetry

breaking or partial symmetry breaking. In essence, AlloyMC sim-

ply applies off-the-shelf model counters on Alloy specifications, by

extending the original Alloy grammars and GUI. It neither consid-

ers symmetry breaking during counting, nor is able to count the

non-isomorphic models.

Much work has been done in approximate model counting with

sampling [9, 17, 21–25, 33, 50, 51, 61]. A significant amount of re-

search has been attempted in utilizing symmetry breaking in SAT

and constraint solving [5, 14, 15, 18–20, 38–40, 44, 46]. However,

only a few works focus on applying symmetry in the area of model

counting. Besides the recent study [60] by Wang et al. as discussed

above, we are only aware of one very recent paper by Bremen et

al. [58], which is closely related to our paper. The authors exploited

the inherent symmetry exhibited in combinatorial problems for

component caching-based model counters. Their approach is im-

plemented in a propositional counter called SymGanak. There are

6 7 8 9 10

Node

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

26 27 28 29 30

link

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

26 27 28 29 30

Node link

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

26 27 28 29 30

Node link

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

26 27 28 29 30

Node link

Perm (1 2) Perm (3 4)

Perm (2 3) Perm (4 5)

Figure 2: Permutations of the cyclic linked list specification
explicitly eliminated by Kodkod symmetry breaking.

two main differences between SymMC and SymGanak: 1) SymMC

presents a specialized counting approach for Alloy specifications

which can do both non-isomorphic model enumeration/counting

and isomorphic counting, while SymGanak can only do the isomor-

phic counting for propositional formulas; 2) SymGanak exploits

symmetry dynamically among the components encountered during

counting, while SymMC dose its counting based on the static sym-

metry info. In addition, the current implementation of SymGanak

does not support projected model counting
1
.

3 BACKGROUND
We introduce the basics of Alloy specifications and Kodkod par-

tial symmetry breaking for Alloy specifications, using a simple

illustrative example in Figure 1.

3.1 Alloy Specifications
An Alloy specification usually consists of three key components:

signature declarations which define sets or relations, constraint para-
graphs which define the constraints over the signatures, and com-
mands which provide instructions for the Alloy analyzer to carry

out various analyses. Figure 1 shows a specification example which

aims to generate a cyclic linked list. A signature (keyword sig)

named Node represents a set of atoms (line 1). In the body of the

signature declaration, the field named link represents a binary

relation over the Node set (i.e., 𝑙𝑖𝑛𝑘 ⊆ 𝑁𝑜𝑑𝑒 × 𝑁𝑜𝑑𝑒). Here, the

keyword one means that for any atom 𝑛 ∈ 𝑁𝑜𝑑𝑒 , there exists ex-
actly one atom 𝑛′ ∈ 𝑁𝑜𝑑𝑒 satisfying that (𝑛, 𝑛′) ∈ 𝑙𝑖𝑛𝑘 . A predicate

Cyclic defines a constraint saying that all nodes are reachable from

every node n (keyword all) following one or more traversals (sym-

bol ˆ) along with the link (line 2-4). The run command requests

the Alloy analyzer to search for an instance (i.e., a model) of the

predicate Cyclic. Here, 5 Node means that the Node set contains at

most 5 atoms. Given a specification, the Alloy analyzer invokes

the backend constraint solver called Kodkod [54] to translate it

into a SAT formula. The formula is then solved by an off-the-shelf

SAT solver to check the satisfiablity of the predicate constraint. For

more details of Alloy, please refer to the book [27].

1
Please refer to the discussion at: https://github.com/meelgroup/ganak/issues/14

https://github.com/meelgroup/ganak/issues/14

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

3.2 Kodkod Partial Symmetry Breaking for
Alloy Specifications

As a backend solver of Alloy, Kodkod [54] is an efficient constraint

solver, which supports static partial symmetry breaking at the prob-

lem domain level [49, 53].

Kodkod Translation on RelationsWhen Kodkod translates an

Alloy specification into a SAT formula, it treats every relation as

a matrix of Boolean variables [26]. The dimension of the matrix

equals to the relation’s arity. A signature (i.e., a set of atoms) is

specially viewed as a unary relation and is represented by a vector.

The vector and the matrix representing the Node and link relations

respectively in the illustrative example are shown in Figure 2 (each

Boolean variable is indexed with a unique number). Since the run

command defines that at most 5 atoms are in the Node relation,

the Node relation is represented by a vector with length 5; the link

relation which maps Node to Node is represented by a 5 × 5 matrix.

Symmetry Type, Permutations and Transpositions Kodkod

symmetry detection for Alloy specifications is straightforward:

the symmetry of Alloy specifications happens in each declared

signature that can contain more than one atom. In Kodkod, such

signature is called a symmetry type. In the illustrative example, the

Node signature is a symmetry type. The interchange of any atoms

within symmetry types is taken as one permutation. Figure 2 shows
four permutations of the illustrative example. The top left of Fig-

ure 2 shows one permutation which interchanges atom 1 and atom

2 in the symmetry type Node; the variables in row 1 and row 2,

and column 1 and column 2 of the link relation matrix are also

exchanged correspondingly (as indicated by the red arrows), since

the link relation has the symmetry type Node in both dimensions.

A permutation can be represented as a set of transpositions (i.e.,
permutations which only exchange two atoms and keep all others

fixed). For example, all the permutations shown in Figure 2 are

actually transpositions.

Partial Symmetry Breaking Kodkod performs partial symmetry

breaking using the lexicographical order (lex-order) predicate [53].
For each symmetry type, Kodkod defines a lex-order predicate

over all its atoms. The predicates over atoms are then transformed

into the lex-order predicates over the variables in relation matri-

ces which contain the symmetry type. Figure 2 shows all four

permutations of the example that are explicitly eliminated by Kod-

kod defined lex-order predicates. To eliminate the permutation

(1, 2) shown in the top left of Figure 2, Kodkod defines the lex-

order predicate over atoms that atom 1 is lex-smaller (denoted

as ⪯𝑙𝑒𝑥) than atom 2 in the symmetry type Node. This defines

the lex-order of the variables in the relation matrix link: vari-

ables in row 1 are lex-smaller than the corresponding variables

in row 2, which also applies to column 1 and column 2. Thus, the

lex-order predicate over atoms (𝑎𝑡𝑜𝑚 1 ⪯𝑙𝑒𝑥 𝑎𝑡𝑜𝑚 2) is equiva-
lent to the lex-order predicate over variables in relation matrices:

(1 ⪯𝑙𝑒𝑥 2) ∧ (6 ⪯𝑙𝑒𝑥 12) ∧ (7 ⪯𝑙𝑒𝑥 11) ∧ (8 ⪯𝑙𝑒𝑥 13) ∧ (9 ⪯𝑙𝑒𝑥
14)∧(10 ⪯𝑙𝑒𝑥 15)∧(16 ⪯𝑙𝑒𝑥 17)∧(21 ⪯𝑙𝑒𝑥 22)∧(26 ⪯𝑙𝑒𝑥 27). This
way, by transforming the predicate over atoms: (atom 1 ⪯𝑙𝑒𝑥 atom

2) ∧ (atom 2 ⪯𝑙𝑒𝑥 atom 3) ∧ (atom 3 ⪯𝑙𝑒𝑥 atom 4) ∧ (atom 4 ⪯𝑙𝑒𝑥
atom 5) into the predicate over variables, the Kodkod symmetry

breaking predicate is created, with which all four permutations in

Figure 2 are explicitly eliminated.

N0
N0

N0

N0

N0

N0

N1

N1

N1

N1

N1

N2

N2

N2

N2

N3

N3

N3

N4

N4

Figure 3: All models of the illustrative example under Kod-
kod partial symmetry breaking; the dashed circle represents
an empty linked list.

v: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
m1: [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0]
m2: [1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0]

Figure 4: Applying the transposition list of permutation (1,
2) on model𝑚1 to obtain the permuted model𝑚2. For each
model, the values of 30 primary variables are shown.

As shown in the example, Kodkod only explicitly considers elim-

inating a linear number of permutations in each symmetry type,

which might implicitly eliminate other permutations. Although effi-

cient, there is no guarantee to break all symmetries. As shown in

Figure 3, two satisfying models under the defined SBP are isomor-

phic to each other (circled by the red dashed line). In sum, Kodkod’s
partial symmetry breaking is based on heuristics, and there is no
characterization of what portion of permutations is eliminated by the
defined SBP.

4 SYMMC
Given that the pruning ability of Kodkod SBPs is unpredictable,

instead of only considering the permutations that are explicitly elim-

inated by the Kodkod SBPs, SymMC enhances Kodkod to extract

the symmetry information which is able to generate all possible per-
mutations. It then samples permutations which are usually much

larger than the permutations explicitly eliminated by Kodkod SBPs,

using well-designed algorithms with theoretical guarantees to ap-

proximate the non-isomorphic model set/count and the isomporhic

model count.

4.1 Overview
The overview of SymMC is shown in Figure 5. The input of SymMC

is an arbitrary Alloy specification. SymMC has three key func-

tionalities which correspond to three outputs: the non-isomorphic

models/count of the specification, the isomorphic model count of

the specification, and the quantification metric in evaluating the

pruning ability of the applied Kodkod partial SBP. In order to re-

alize these functionalities, SymMC consists of three modules: 1)

enhanced Kodkod which not only encodes the Alloy specification

under PaSB into a SAT formula (with primary variables indicated),

but also extracts the symmetry info of the specification; 2) the

all-satisfiable model enumerator which generates all the satisfy-

ing models projected over primary variables under PaSB; 3) the

estimator module including the two estimators for approximating

the non-isomorphic model set/count and the isomorphic model

count, respectively. The quantification metric is the by-product of

the non-isomorphic estimator. The following subsections introduce

these three modules in detail.

SymMC: Approximate Model Enumeration and Counting Using Symmetry Information for Alloy Specifications ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Alloy
spec.

sym. info
extraction

Enhanced
Kodkod

PaSB
sat formula

(PaSB)

All-SAT model
enumerator

isomorphic
counting

Estimator

non-isomorphic
enumeration/

counting

non-isom.
model

set/count
model set
(PaSB)

sym. info isom. model
count

eval. metric1
2

3

Figure 5: SymMC overview

4.2 Enhanced Kodkod with Symmetry Info
Extraction

The enhanced Kodkod module can not only perform partial sym-

metry breaking but also extract the symmetry info of the input

specification, with which all possible permuted models of a given

model can be efficiently generated. To illustrate why and how we

enhance Kodkod for symmetry info extraction, we first present how

one permuted model of a given model is created with the symmetry

info available from the vanilla Kodkod; we then show that extra

symmetry info is needed for efficient permuted model generation.

With our illustrative example, we explain how the permuted

model𝑚2 of a given model𝑚1 is obtained under permutation (1, 2),

as shown in Figure 4. As mentioned above, the detailed info of the

permutation (1, 2) w.r.t. the symmetry type Node is a transposition

list of the corresponding Boolean variables in Node and link: (1, 2),

(6, 12), (7, 11), (8, 13), (9, 14), (10, 15), (16, 17), (21, 22) and (26, 27). For

the model𝑚1, values of the Boolean variables in each transposition

in the list are exchanged to obtain the permuted model𝑚2 under

the permutation (1, 2).

As known, every permutation can be decomposed as products

of a linear number of transpositions of any two atoms, while every

permutation can be decomposed as products of a quadratic number

of nearest-neighbor transpositions (i.e., the transpositions of two
atoms which are next to each other). As illustrated in Section 3,

Kodkod only considers nearest-neighbor transpositions for each

symmetry type (e.g., (1, 2), (2, 3), (3, 4) and (4, 5) in our example).

To get a simple decomposition of any permutation in the example,

besides the nearest-neighbor transpositions, we also need the info

(i.e., the transposition list of the corresponding Boolean variables)

of other transpositions (e.g., (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), and (3,

5) in our example). In sum, to efficiently generate any permuted

model w.r.t. one symmetry type, we need the info of transpositions

of any two atoms in that type. Thus, we enhance Kodkod to extract

the info of all possible transpositions for each symmetry type. A

permuted model w.r.t. all symmetry types𝐴1, ...𝐴𝑛 is obtained with

the combination of the permutation in each type, thus the number

of all permutations is

∏𝑛
𝑖=1 |𝐴𝑖 |!, which is usually a huge number.

Therefore, the naive non-isomorphic model enumeration/counting

approach as well as the naive isomorphic counting approach could

quickly fail when the number increases substantially. In Section 4.4

and Section 4.5, we will introduce how SymMC utilizes permutation

sampling to make it scalable.

4.3 The AllSAT Model Enumerator
Generating all satisfiable models (AllSAT for short) is a variant of

the propositional satisfiability problem. According to the recent

survey [52], AllSAT solvers can be classified into three categories:

blocking clause-based, chronological backtracking-based and Bi-

nary Decision Diagram (BDD)-based. The blocking clause-based

AllSAT solver is the most typical and easiest to implement. It it-

eratively computes satisfying models using a traditional Boolean

satisfiability (SAT) solver and adds blocking clauses which are the

complement of the already enumerated models. In the current im-

plementation of SymMC, we build a blocking clause based ALLSAT

solver on top of a classic SAT solver called MiniSat-2.2.0 [16] to

enumerate projected models over primary variables for the SAT

formula encoding the input Alloy specification under PaSB.

4.4 The Non-Isomorphic Model Estimator
One key functionality of SymMC is to approximately enumer-

ate/count the non-isomorphic models for the input Alloy speci-

fication, with its model set under PaSB (denoted asM𝑃) produced

by All-SAT enumerator and the extracted symmetry info (i.e., the

symmetry information containing the transpositions of any two

atoms; denoted as 𝑆𝑦𝑚) produced by enhanced Kodkod module. We

first formulate the non-isomorphic model enumeration/counting

problem as a graph theory problem. We then propose our estimator

and show that the estimator is able to provide high approximation

accuracy thanks to the problem formulation. Finally, we present

a practical approximate model enumeration/counting algorithm

realizing the estimator.

4.4.1 The Estimator.

Problem Definition 1. Let E be the set of all possible permuta-
tions. Let 𝑓 (𝑚, 𝑒) be a function which outputs a permutedmodel by ap-
plying a permutation 𝑒 ∈ E to a model𝑚 ∈ M𝑃 . Let =𝐹 be an equiv-
alence relation onM𝑃 such that𝑚 =𝐹 𝑚′ iff ∃𝑒 ∈ E .𝑓 (𝑚, 𝑒) = 𝑚′.
The goal is to count the number of equivalence classes defined by =𝐹 ,
which is the non-isomorphic model count 𝐶𝐹 ; and to select one model
from each equivalence class to create a non-isomorphic model setM𝐹 .

The non-isomorphic model enumeration/counting problem can

be converted into a graph theory problem defined as follows.

Problem Definition 2. The equivalence relation =𝐹 on M𝑃

can be represented as a directed graph 𝐺 (M𝑃 ,=𝐹), where each node
represents a model inM𝑃 , and each edge from the node of𝑚 ∈ M𝑃 to

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

Algorithm 1 SymMC approximate non-isomorphic model enumer-

ation and counting.

Input: all the models under PaSBM𝑃 ; symmetry info 𝑆𝑦𝑚

produced by enhanced Kodkod module.

Output: the non-isomorphic model set
ˆM𝐹 , count 𝐶𝐹 ,

and the sampled permutation set
ˆE.

Parameters: initial sample ratio 𝑑 ; sample growth rate 𝑟 ;

the early stopping criterion 𝜃 ; numbers of all perm 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚

1: procedure approxNonIsom(M𝑃 , 𝑆𝑦𝑚)

2:
ˆE ← ∅

3: =̂𝐹 ← ∅
4:

ˆM𝐹 ←M𝑃

5: 𝑠𝑎𝑚𝑝𝑠𝑖𝑧𝑒 ← 𝑠𝑒𝑡𝑆𝑎𝑚𝑝𝑆𝑖𝑧𝑒 (𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚,𝑑)
6: do
7: 𝑏 ← | ˆM𝐹 | ⊲ back up the size of

ˆM𝐹 .

8: Δ← 𝑠𝑎𝑚𝑝𝑃𝑒𝑟𝑚𝑠 (𝑆𝑦𝑚, 𝑠𝑎𝑚𝑝𝑠𝑖𝑧𝑒, ˆE)
9: for each𝑚 ∈ M𝑃 do
10: MΔ ← 𝑎𝑝𝑝𝑙𝑦𝑃𝑒𝑟𝑚𝑠 (𝑚,Δ,M𝑃)
11: =̂𝐹 ← =̂𝐹 ∪ ({𝑚} ×MΔ)
12: end for
13:

ˆM𝐹 ← 𝑤𝑐𝑐 (𝐺 (M𝑃 , =̂𝐹))
14:

ˆE ← ˆE ∪ Δ
15: 𝑠𝑎𝑚𝑝𝑠𝑖𝑧𝑒 ← 𝑠𝑒𝑡𝑆𝑎𝑚𝑝𝑆𝑖𝑧𝑒 (𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚, 𝑟)
16: while | ˆE| < 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚 ∧ 𝑏 − | ˆM𝐹 | > 𝜃

17: 𝐶𝐹 ← | ˆM𝐹 |
18: return ˆM𝐹 , 𝐶𝐹 ,

ˆE
19: end procedure

(a) The graph𝐺 (M𝑃 ,=𝐹) . (b) The graph𝐺 (M𝑃 , =̂𝐹) .

Figure 6: An intuitive illustration of why our non-
isomorphicmodel estimator is able to provide high accuracy.
(a) shows two components of the graph, each of which is
fully connected; (b) shows that 85% random edge deletion
of the graph still preserves its weak connectivity.

the node of𝑚′ ∈ M𝑃 represents𝑚 =𝐹 𝑚′. The non-isomorphic count
𝐶𝐹 is equal to the number of weakly connected components in the
graph. One node in each weakly connected component is arbitrarily
selected, and the models represented by these nodes constitute a non-
isomorphic modelM𝐹 .

Theorem 1. Let =̂𝐹 be a relation on M𝑃 , such that 𝑚 =̂𝐹 𝑚′

iff ∃𝑒 ∈ ˆE .𝑓 (𝑚, 𝑒) =𝑚′, where ˆE is a sample of E. The relation =̂𝐹 on
M𝑃 can be represented by a directed graph𝐺 (M𝑃 , =̂𝐹). Let𝐶𝐹 be the
number of weakly connected components in the graph 𝐺 (M𝑃 , =̂𝐹).
One node in each weakly connected component of 𝐺 (M𝑃 , =̂𝐹) is
arbitrarily selected; and let ˆM𝐹 be the set of models represented by

the selected nodes. 𝐶𝐹 is the upper bound of 𝐶𝐹 ; and ˆM𝐹 is the over-
approximation ofM𝐹 , meaning that for any model𝑚 ∈ M𝐹 , there
exists a model𝑚′ ∈ ˆM𝐹 such that𝑚 =𝐹 𝑚′.

Proof. According to the definitions of =𝐹 and =̂𝐹 , if𝑚 =̂𝐹 𝑚′

then 𝑚 =𝐹 𝑚′. Therefore, all edges in 𝐺 (M𝑃 , =̂𝐹) are also in

𝐺 (M𝑃 ,=𝐹). Thus, the weakly connected components in𝐺 (M𝑃 ,=𝐹
) are no more than those in 𝐺 (M𝑃 , =̂𝐹), thus 𝐶𝐹 ≥ 𝐶𝐹 .

We prove
ˆM𝐹 is the over-approximation ofM𝐹 by contradiction.

Assume
ˆM𝐹 is not the over-approximation ofM𝐹 , meaning that

there exists a model𝑚 ∈ M𝐹 , for any model𝑚′ ∈ ˆM𝐹 such that

𝑚 ≠𝐹 𝑚′. Therefore, if𝑚 =𝐹 𝑚′ then𝑚′ ∉ ˆM𝐹 , which means
ˆM𝐹

does not include any models in the equivalence class of𝑚 w.r.t. =𝐹 .

This contradicts to the definition of
ˆM𝐹 .

□

Constructing the graph𝐺 (M𝑃 , =̂𝐹) is equivalent to deleting the

edges of the graph 𝐺 (M𝑃 ,=𝐹) corresponding to the unsampled

permutations.

Theorem 2.
ˆM𝐹

=𝐹→M𝐹 and 𝐶𝐹 → 𝐶𝐹 when ˆE → E. Here, =𝐹→
refers to the convergence w.r.t. =𝐹 .

Proof. According to the definitions of =𝐹 and =̂𝐹 , if ˆE → E,
then =̂𝐹 →=𝐹 . Therefore, we have

ˆM𝐹
=𝐹→M𝐹 and 𝐶𝐹 → 𝐶𝐹 . □

In sum, we use 𝐶𝐹 as the estimator of 𝐶𝐹 , which provides the

upper bound of𝐶𝐹 ; and
ˆM𝐹 as the estimator ofM𝐹 , which provides

the over-approximation ofM𝐹 . As shown in Theorem 2, they both

have the consistency property. It is important to note that the

consistency property can be achieved when | ˆE| is much smaller

than |E |. Because each weakly connected component w.r.t. =𝐹 is

in fact fully connected (i.e., every two nodes in the component are

directly and mutually connected), for which randomly deleting a

large number of edges might still preserve the weak connectivity.

This explains SymMC surprisingly high estimation accuracy for

non-isomorphic model enumeration and counting, as shown in

Section 5. Figure 6 shows a conceptual example to illustrate our

intuition, where after randomly deleting 85% of the edges in a fully

connected graph with two components, its weak connectivity still

preserves.

4.4.2 The Algorithm. The practical algorithm based on the pro-

posed estimators for approximating the non-isomorphic models or

count is presented in Algorithm 1. Initially, the permutation sample

set
ˆE is set to empty (line 2), and the graph 𝐺 (M𝑃 , =̂𝐹) is con-

structed with only nodes representing the models under PaSB and

no edges (line 3-4). In addition, the sample size is initialized based

on the total number of permutations and the initial sample ratio,

using the 𝑠𝑒𝑡𝑆𝑎𝑚𝑝𝑆𝑖𝑧𝑒 function, which is shown in Algorithm 2

(line 5).

The general idea of the algorithm is to incrementally add edges to

the graph based on each round of sampled permutations and update

the estimated non-isomorphic model set and count iteratively. To

do so, in each round, a set of new permutations Δ is randomly

sampled from the total permutation set E without replacement (line
8); Δ is then used to generate permuted models inM𝑃 (line 10) and

add new edges to the graph (line 11); The Union-Find algorithm

SymMC: Approximate Model Enumeration and Counting Using Symmetry Information for Alloy Specifications ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Algorithm 2 SymMC permutation sample size setting.

Input: perms number 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚; the sampling rate 𝑟𝑎𝑡𝑖𝑜 .

Output: the sample size 𝑠𝑎𝑚𝑝𝑠𝑖𝑧𝑒

Parameters: sample size range [𝑚𝑖𝑛𝑝𝑒𝑟𝑚,𝑚𝑎𝑥𝑝𝑒𝑟𝑚];
1: procedure setSampSize(𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚, 𝑟𝑎𝑡𝑖𝑜)

2: if 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚 ≤ 𝑚𝑖𝑛𝑝𝑒𝑟𝑚 then
3: return 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚

4: end if
5: 𝛼 ← 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚 · 𝑟𝑎𝑡𝑖𝑜
6: if 𝛼 < 𝑚𝑖𝑛𝑝𝑒𝑟𝑚 then
7: return𝑚𝑖𝑛𝑝𝑒𝑟𝑚

8: end if
9: if 𝛼 ≤ 𝑚𝑎𝑥𝑝𝑒𝑟𝑚 then
10: return 𝛼

11: end if
12: return𝑚𝑎𝑥𝑝𝑒𝑟𝑚 ⊲ 𝛼 > 𝑚𝑎𝑥𝑝𝑒𝑟𝑚

13: end procedure

[12] is then performed on the graph𝐺 (M𝑃 , =̂𝐹) to find its weakly

connected components and construct
ˆM𝐹 (line 13)

2
; The sampled

permutation set
ˆE gets updated with the set of new permutations

Δ (line 14). As the number of added edges grows, the number of

weakly connected components decreases, so as the estimated count.

The approximation process continues until the decrease of the

estimated count is not significant under the early stopping criterion

𝜃 or all permutations have been sampled (line 16).

Algorithm 2 shows the details of how we set the sample size

given the total permutation number 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚 and the sampling

rate 𝑟𝑎𝑡𝑖𝑜 . The idea is that if the total permutation number is smaller

than the threshold𝑚𝑖𝑛𝑝𝑒𝑟𝑚, we utilize all the permutations without

doing the sampling (lines 2-4); otherwise, we first set the sample size

based on the sampling rate and normalize it within a parameterized

range [𝑚𝑖𝑛𝑝𝑒𝑟𝑚,𝑚𝑎𝑥𝑝𝑒𝑟𝑚] (lines 5-12).

4.4.3 The Quantification Metric. There is a by-product of the non-
isomorphic model approximation, which is the quantification met-

ric for approximately evaluating the pruning ability of the ap-

plied Kodkod partial symmetry breaking predicate. Inspired by

Shlyakhter [48], we define the metric as the ratio of non-isomorphic

count to the count under PaSB:
𝐶𝐹

|M𝑃 | . The range of the metric is

(0,1]. Larger value indicates higher pruning ability. The value of

1 indicates that the Kodkod partial SBP is actually doing full sym-

metry breaking. Note that since 𝐶𝐹 is the upper bound of 𝐶𝐹 , the

metric is an optimistic estimation in evaluating the pruning ability.

4.5 The Isomorphic Count Estimator
The isomorphic count estimator takesM𝑃 and 𝑆𝑦𝑚 as inputs. It

first utilizes the non-isomorphic model estimator to generate the

estimated non-isomorphic model set
ˆM𝐹 . Based on

ˆM𝐹 , the iso-

morphic counting problem is formulated as a statistical inference

problem, where the desired isomorphic count denoted by 𝐶𝑁 is es-

timated using simple random sampling techniques [45] (Chapter 7.3,

2
In our implementation, for efficiency purposes, we utilize the Union-Find operations

to combine disjoint sets as long as new edges are found, instead of constructing a

complete graph before computing WCCs.

Page 202-220). We show that the expectation of the estimator pro-

vides the upper bound of the isomorphic count and has consistency

property.

4.5.1 The Estimator.

Problem Definition 3. Let =𝑁 be an equivalence relation on
M𝐹 × E such that (𝑚, 𝑒) =𝑁 (𝑚′, 𝑒 ′) iff 𝑓 (𝑚, 𝑒) = 𝑓 (𝑚′, 𝑒 ′). Our
goal is to calculate the number of equivalence classes defined by =𝑁 ,
which is the count 𝐶𝑁 .

Lemma 1. Let I : E ↦→ {1, . . . , |E |} be a permutation ordering
function which returns the index of a permutation in E based on a
predefined ordering of the permutations in E. Let G𝑁 :M𝐹 × E ↦→
{0, 1} be a global labeling function over all model-permutation pairs:

G𝑁 (𝑚, 𝑒) =
{
0, ∃𝑒 ′ ∈ E .I(𝑒 ′) < I(𝑒) ∧ (𝑚, 𝑒) =𝑁 (𝑚, 𝑒 ′)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Thus, we have 𝐶𝑁 =
∑
𝑚∈M𝐹

∑
𝑒∈E G𝑁 (𝑚, 𝑒).

Proof. First, we prove that for any𝑚,𝑚′ ∈ 𝑀𝐹 and 𝑒, 𝑒 ′ ∈ E, if
𝑚 ≠𝑚′ then (𝑚, 𝑒) ≠𝑁 (𝑚′, 𝑒 ′) by contradiction. Assuming there

exists 𝑚,𝑚′ ∈ 𝑀𝐹 and 𝑒, 𝑒 ′ ∈ E such that 𝑚 ≠ 𝑚′ ∧ (𝑚, 𝑒) =𝑁
(𝑚′, 𝑒 ′). By the definition of =𝑁 , we have 𝑓 (𝑚, 𝑒) = 𝑓 (𝑚′, 𝑒 ′). We

then have 𝑓 (𝑚, 𝑒𝑒 ′−1) =𝑚′, thus𝑚 =𝐹 𝑚′. By the definitions of =𝐹
andM𝐹 , we know that if𝑚,𝑚′ ∈ M𝐹 and𝑚 =𝐹 𝑚′ then𝑚 =𝑚′.
This contradicts to𝑚 ≠𝑚′.

Thus, we have that the number of the equivalence classes (w.r.t.

=𝑁) in M𝐹 × E, which is 𝐶𝑁 , is the sum of the number of the

equivalence classes (w.r.t. =𝑁) of {𝑚} × E for every 𝑚 ∈ M𝐹 .

For each𝑚 ∈ M𝐹 , the number of equivalence classes (w.r.t. =𝑁)

in {𝑚} × E is the sum of all labels

∑
𝑒∈E G𝑁 (𝑚, 𝑒). Because the

model-permutation pair with the smallest permutation index in

each equivalence class (w.r.t. =𝑁) is taken as the representative of

that class and labeled as 1, and the rest pairs are labeled as 0. Thus,

we have 𝐶𝑁 =
∑
𝑚∈M𝐹

∑
𝑒∈E G𝑁 (𝑚, 𝑒).

□

Theorem 3. Let ˆE be a set of permutations uniformly sampled
from E. One estimator of 𝐶𝑁 is 𝐶𝑁 =

|E |
| ˆE |

∑
𝑚∈M𝐹

∑
𝑒∈ ˆE G𝑁 (𝑚, 𝑒).

𝐶𝑁 is an unbiased estimator of 𝐶𝑁 .

Proof. Let 𝜇𝑚 = 1

| ˆE |
∑
𝑒∈ ˆE G𝑁 (𝑚, 𝑒) be the mean of the labels

over {𝑚} × ˆE, and 𝜇𝑚 = 1

|E |
∑
𝑒∈E G𝑁 (𝑚, 𝑒) be the mean of labels

over {𝑚} × E. Based on the properties of simple random sampling

[45] (Chapter 7.3, Page 205), we have E(𝜇𝑚) = 𝜇𝑚 . Thus, we have

E(𝐶𝑁) = |E |
∑︁

𝑚∈M𝐹

E(𝜇𝑚) =
∑︁

𝑚∈M𝐹

|E |𝜇𝑚 = 𝐶𝑁 .

□

However, the labeling via the global labeling function G𝑁 could

be expensive when the permutation size becomes large. To make

it scalable, we propose a sample labeling function
ˆG𝑁 as follows,

with which the labeling is done only w.r.t. the model-permutation

pairs in
ˆM𝐹 × ˆE.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

Theorem 4. Let ˆM𝐹 be the estimated non-isomorphic model set
generated by our non-isomorphic model estimator. Let ˆI :

ˆE ↦→
{1, . . . , | ˆE|} be a sample ordering function which returns the index
of a sampled permutation in ˆE based on a predefined ordering of the
permutations in ˆE. Let ˆG𝑁 be a sample labeling function:

ˆG𝑁 (𝑚, 𝑒) =
{
0, ∃𝑒 ′ ∈ ˆE . ˆI(𝑒 ′) < ˆI(𝑒) ∧ (𝑚, 𝑒) =𝑁 (𝑚, 𝑒 ′)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

One estimator of𝐶𝑁 is defined as𝐶 ′
𝑁

=
|E |
| ˆE |

∑
𝑚∈ ˆM𝐹

∑
𝑒∈ ˆE

ˆG𝑁 (𝑚, 𝑒).

E(𝐶 ′𝑁) is the upper bound of 𝐶𝑁 .

Proof. For any 𝑚,𝑚′ ∈ ˆM𝐹 , if 𝑚 =𝐹 𝑚′, then the number

of equivalence classes in {𝑚} × ˆE equals to that in {𝑚′} × ˆE.
Thus,

∑
𝑒∈ ˆE

ˆG𝑁 (𝑚, 𝑒) = ∑
𝑒∈ ˆE

ˆG𝑁 (𝑚′, 𝑒). Since ˆM𝐹 is the over-

approximation ofM𝐹 (see Theorem 1), we have

𝐶 ′𝑁 ≥
|E|
| ˆE|

∑︁
𝑚∈M𝐹

∑︁
𝑒∈ ˆE

ˆG𝑁 (𝑚, 𝑒) . (1)

Next, for each 𝑚 ∈ M𝐹 , we divide model-permutation pairs of

{𝑚} × ˆE into equivalence classes w.r.t. =𝑁 : if we label the pairs via

ˆG𝑁 , there is exactly one pair labeled as 1 for each equivalence class

(w.r.t. =𝑁); if we label the pairs via G𝑁 , there is at most one pair

labeled as 1 for each equivalence class (w.r.t. =𝑁). Thus, we have∑︁
𝑒∈ ˆE

ˆG𝑁 (𝑚, 𝑒) ≥
∑︁
𝑒∈ ˆE
G𝑁 (𝑚, 𝑒). (2)

Based on Inequation 1, Inequation 2 and Theorem 3, we have

E(𝐶 ′𝑁) ≥ E(
|E |
| ˆE|

∑︁
𝑚∈M𝐹

∑︁
𝑒∈ ˆE
G𝑁 (𝑚, 𝑒)) = E(𝐶𝑁) = 𝐶𝑁 .

□

Theorem 5. 𝐶 ′
𝑁
→ 𝐶𝑁 when ˆE → E.

Proof. If
ˆE → E, then ˆM𝐹

=𝐹→ M𝐹 based on Theorem 2, and

ˆG𝑁 → G𝑁 based on Theorem 4. Thus, we have 𝐶 ′
𝑁
→ 𝐶𝑁 . □

We use𝐶 ′
𝑁

=
|E |
| ˆE |

∑
𝑚∈ ˆM𝐹

∑
𝑒∈ ˆE

ˆG𝑁 (𝑚, 𝑒) as our final estimator

of 𝐶𝑁 . The estimator has the consistency property and its expecta-

tion provides the upper bound of 𝐶𝑁 .

4.5.2 The Algorithm. Our isomorphic model counting algorithm

for realizing the estimator 𝐶 ′
𝑁
is shown in Algorithm 3. The algo-

rithm is built upon the non-isomorphic model enumeration al-

gorithm, which reuses the sampled permutations and the non-

isomorphic models produced by the non-isomorphic algorithm

(line 2). Note that for each model𝑚 ∈ ˆM𝐹 , all the models in the

permuted model setM
ˆE are labeled as 1 and the rest (the dupli-

cated models with the models inM
ˆE) are labeled as 0. Therefore,

for each𝑚 ∈ ˆM𝐹 , the sum of the labels

∑
𝑒∈ ˆE

ˆG𝑁 (𝑚, 𝑒) is the size
of the permuted model (line 7).

Algorithm 3 SymMC approximate isomorphic model counting.

Input: all the models under PaSBM𝑃 ; symmetry info 𝑆𝑦𝑚

produced by enhanced Kodkod module.

Output: the estimated isomorphic model count 𝐶 ′
𝑁
.

1: procedure approxIsom(M𝑃 , 𝑆𝑦𝑚)

2:
ˆM𝐹 , _, ˆE ← 𝑎𝑝𝑝𝑟𝑜𝑥𝑁𝑜𝑛𝐼𝑠𝑜𝑚(M𝑃 , 𝑆𝑦𝑚)

3: 𝑡𝑜𝑡𝑎𝑙𝑠𝑎𝑚𝑝 ← | ˆE|
4: 𝑠𝑢𝑚 ← 0

5: for each𝑚 ∈ ˆM𝐹 do
6: M

ˆE ← 𝑎𝑝𝑝𝑙𝑦𝑃𝑒𝑟𝑚𝑠 (𝑚, ˆE)
7: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + |M

ˆE |
8: end for
9: 𝐶 ′

𝑁
← 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚/𝑡𝑜𝑡𝑎𝑙𝑠𝑎𝑚𝑝 · 𝑠𝑢𝑚

10: return 𝐶 ′
𝑁

11: end procedure

5 EXPERIMENTAL EVALUATION
SubjectsWe take the specifications from four sources as our sub-

jects, including 1) 53 specifications fromAlloy standard distribution,

arising from a variety of real-world applications such as security in

protocols and file systems; 2) 14 specifications from Kodkod stan-

dard distribution including constraint satisfaction problems such

as the graph coloring problem and the Latin squares problem; 3)

n-Queen (10 specifications) and 3-Queen problems (9 specifications)

from the recent study of the symmetry breaking impact in model

counting [60]; 4) 30 specifications from the recent study [36] that

counts the models for 6 data structures (e.g., red-black trees and

double linked lists), each with 5 different scopes. In total, there are

116 specifications, out of which 6 specifications have no detected

symmetries (4 from Alloy category and 2 from Kodkod category).

We exclude those subjects in our experiments. Therefore, there

are 110 subjects in our benchmark, including 49 subjects in Alloy

category, 12 subjects in Kodkod category, 19 subjects in n-Queen

category, and 30 subjects in Data Structure category.

Platform All the experiments were performed on a machine with

a 3.7 GHz Intel Core i7-8700K CPU and 32 GB RAM.

Research Questions Our research questions are summarized as

follows:

• RQ1: How does SymMC perform in approximating the non-

isomorphic models/count?

• RQ2: How does SymMC perform in approximating the iso-

morphic count?

• RQ3:What does the quantificationmetric of SymMC indicate

about the pruning ability of Kodkod partial SBPs?

5.1 RQ1: SymMC Performance in
Approximating Non-Isomorphic Models

The Baseline Since there is no existing automatic tool for non-

isomorphic model enumeration for Alloy specifications, we make

an exact model enumeration and counting variant of SymMC called

SymMC-exact as our baseline, by turning off the permutation sam-

pling of SymMC (i.e., do the enumeration and counting with all

possible permutations).

SymMC: Approximate Model Enumeration and Counting Using Symmetry Information for Alloy Specifications ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

100

101

Sp
ee

du
p

0 10 20 30 40
Subjects

0.00

0.25

0.50

0.75

1.00

Re
du

ct
io

n
Ra

te

Figure 7: The top shows SymMC approximation speedup
over SymMC-exact. The bottom shows SymMCpermutation
reduction rate, indicating the amount of work that can be
saved with our permutation sampling approach.

Evaluation MetricsWe evaluate SymMC in approximating non-

isomorphic models in three aspects: time efficiency, the computa-

tions saved by our permutation sampling approach, and the ap-

proximation accuracy. For time efficiency, we report the speedup of

SymMC over SymMC-exact. For the amount of saved computation,

we use the permutation reduction rate
𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚−𝑡𝑜𝑡𝑎𝑙𝑠𝑎𝑚𝑝

𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚
as our

metric. For evaluating the approximation accuracy, in linewith prior

work of ApproxMC, we use the error rate as max(𝑎𝑝𝑝𝑟𝑜𝑥𝑒𝑥𝑎𝑐𝑡 , 𝑒𝑥𝑎𝑐𝑡
𝑎𝑝𝑝𝑟𝑜𝑥)−

1, defined based on multiplicative guarantees [10].

Parameter Settings For parameters in Algorithm 2, we set the

minimal permutation sample size𝑚𝑖𝑛𝑝𝑒𝑟𝑚 as 2,000; and the maxi-

mum permutation sample size𝑚𝑎𝑥𝑝𝑒𝑟𝑚 as 100,000. For parameters

in Algorithm 1, we set the initial sample ratio 𝑑 as 0.5; the sample

growth rate 𝑟 as 0.15; and the early stopping criterion 𝜃 as 0.

Time Limit We use the standard time limit of 5,000 seconds in

solving each subject in all categories.

The Non-Isomorphic Count Collection In order to validate

the correctness and the approximation accuracy of SymMC non-

isomorphic model enumeration and counting, we need to get the

ground truth of the number of non-isomorphic models. For the sub-

jects in Data Structure category and n-Queen category, we collect

the non-isomorphic count in the On-line Encyclopedia of Integer

Sequences (OEIS) [1] as the ground truths. For the other two cate-

gories, we get the ground truths by applying SymMC-exact with

the extended time limit of 20,000 seconds.

5.1.1 Approximation Efficiency. We apply SymMC and SymMC-

exact on all the subjects for enumerating the non-isomorphic mod-

els. Within the time limit, out of 110 subjects, SymMC solves 73

subjects (66.3%) while SymMC-exact solves 68 subjects (61.8%).

There are no cases that cannot be solved by SymMC but solved by

SymMC-exact. Note that there are 31 subjects out of the 73 subjects

solved by SymMC that the total number of permutations 𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑟𝑚

is less than the minimal permutation sampling size𝑚𝑖𝑛𝑝𝑒𝑟𝑚. Based

on the 𝑠𝑒𝑡𝑆𝑎𝑚𝑝𝑆𝑖𝑧𝑒 function (see Section 4.4.2), for those 31 sub-

jects, SymMC does the exact enumeration without permutation

sampling as SymMC-exact. To compare the SymMC approximation

efficiency with SymMC-exact, we omit such subjects and only show

the results of the rest 42 subjects.

Figure 7 shows the speedup of SymMC over SymMC-exact (top)

and the permutation reduction rate of SymMC (bottom) for the 42

subjects. For demonstration purposes, we sort the subjects based

on the permutation reduction rate in its ascending order. We can

observe that, in general, the speedup of SymMC increases as the

reduction rate increases. Overall, SymMC speeds up SymMC-exact

in 74.4% subjects with up to 16.1x. On average, SymMC speeds

up SymMC-exact 1.9x. We notice that, for two subjects, the per-

mutation reduction rate is near 1 which means only a very small

portion of permutations are applied in the approximation. In addi-

tion, we can see that when the reduction rate is near 0 which means

all permutations are applied for the approximation, the speedup

is slightly below 1 which means SymMC is slightly slower than

SymMC-exact. This is because there is a slight overhead for SymMC

to incrementally add the permutations. In general, SymMC is able to
approximate the non-isomorphic models of Alloy specifications with
better time efficiency than the baseline.

5.1.2 Approximation Accuracy. For 73 solved subjects by SymMC

in enumerating non-isomorphic models, the ground truths of 71

subjects are obtained. Surprisingly, SymMC approximates the non-

isomorphic models with 0.0 error rate for all these 71 subjects. The
results suggest that SymMC is able to approximate the non-isomorphic
models with high accuracy, which is consistent with our intuition as
discussed in Section 4.4.1.

5.2 RQ2: SymMC Performance in
Approximating the Isomorphic Count

Baselines For comparison in getting the isomorphic count, we

select two robust state-of-the-art model counters (both in their

default parameter settings) as our baselines, including one exact

model counter called GANAK [47], and one approximate model

counter called ApproxMC [10, 51].

Evaluation Metrics We evaluate SymMC in approximating the

isomorphic count in two aspects: time efficiency and the approxima-

tion accuracy. For time efficiency, we report the actual wall-clock

time cost of the counters. For approximation accuracy, we apply

the approximation error rate max(𝑎𝑝𝑝𝑟𝑜𝑥𝑒𝑥𝑎𝑐𝑡 , 𝑒𝑥𝑎𝑐𝑡
𝑎𝑝𝑝𝑟𝑜𝑥) − 1 as used in

evaluating the non-isomorphic model approximation.

Other Settings We utilize the same parameter setting and time

limit of 5,000 seconds as in non-isomorphic approximation.

The Isomorphic Count Collection To evaluate the approxima-

tion accuracy, we get the ground truth of the isomorphic counts of

our subjects with two tools. We apply SymMC-exact and GANAK

on all the subjects with an extended time limit of 20,000 seconds.

5.2.1 Approximation Efficiency. We apply SymMC, GANAK, and

ApproxMC on all the subjects for counting the isomorphic counts.

Within the time limit, SymMC solves 72 subjects; ApproxMC solves

60 subjects; and GANAK solves 54 subjects, out of 110 subjects.

Figure 8 shows the solving time (in seconds) of the three counters

for the subjects that are solved by at least one counter (there are in

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

0 20 40 60 80
Subjects

10−2

10−1

100

101

102

103

Ti
m
e

SymMC
GANAK
ApproxMC

Figure 8: Sovling time (in seconds) of SymMC, GANAK, and ApproxMC in getting isomorphic counts for all the subjects solved
by at least one counter.

0 10 20 30 40 50 60 70
Subjects solved

10−2

10−1

100

101

102

103

Ti
m

e

SymMC
GANAK
ApproxMC

Figure 9: Cactus plot showing the behavior of SymMC,
GANAK, and ApproxMC (time in seconds).

total 88 subjects); for demonstration purposes, we sort the subjects

based on the solving time of SymMC in the ascending order. We

can observe that SymMC clearly outperforms both GANAK and

ApproxMC in more than three quarters of the subjects. In detail,

SymMC outperforms GANAK in 68 out of 88 solved subjects (77.2%),

and outperforms ApproxMC in 70 out of 88 subjects (79.5%). Overall,

SymMC speeds up GANAK 1.8x, taking 973 seconds less in counting

each subject on average; speeds up ApproxMC 1.6x, taking 703

seconds less in counting each subject on average.

Figure 9 shows the cactus plot for SymMC, GANAK and Ap-

proxMC, where x-asix presents the number of subjects solved and

y-axis presents the solving time. The cactus plot is commonly used

in model counting community, which demonstrates the solving

progress of the counters over time. We can see that SymMC takes

the lead at the beginning, shows its clear superiority at 10 seconds,

and maintains its advantage over two baselines until the end.

We further studied the subjects that are not solved by SymMC

but solved by either of the two baselines. There are in total 15 such

subjects. We found that 13 out of 15 subjects have a large number

of models w.r.t. PaSB, ranging from 10,259,500 to 3,941,750,000

which chokes the blocking clause-basedAllSAT solver in the current

implementation of SymMC. However, based on the experimental

0 10 20 30 40
Subjects

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Er
ro

r R
at

e

SymMC
ApproxMC

Figure 10: Error rates of SymMC and ApprxoMC in approx-
imating the isomorphic count.

results in the recent survey [52], the BDD-based AllSAT solver

(mentioned in Section 4.3) is able to enumerate more than one

quadrillion models, with which SymMC might be able to solve

more such subjects. We will leave this possible improvement as our

future work.

The results suggest that, for computing the isomorphic count,

when models of the specification w.r.t. PaSB is enumerable by the

AllSAT solver and there are symmetries present in the specification,

SymMC could be a preferable choice. Overall, the results show that
SymMC is able to approximate the isomorphic model count of Alloy
specifications with better time efficiency than the baseline counters.

5.2.2 Approximation Accuracy. To evaluate the approximation ac-

curacy of SymMC, we take the state-of-the-art approximate model

counter ApproxMC as our baseline. Since GANAK is an exact model

counter, we do not take GANAK as the baseline for approximation

accuracy evaluation. For 72 solved subjects by SymMC, the ground

truths of 64 subjects are obtained; for 60 solved subjects by Ap-

proxMC, the ground truths of 56 subjects are obtained. The results

show that SymMC solves the 64 subjects with the maximum error

rate of 0.15, the minimum error rate of 0.0, and the average error

rate of 0.003; ApproxMC solves the 56 subjects with the maximum

error rate of 0.20, the minimum error rate of 0.0, and the average

SymMC: Approximate Model Enumeration and Counting Using Symmetry Information for Alloy Specifications ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

0 10 20 30 40 50 60 70
Subjects

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ric

Alloy DS Kodkod n-Queens

Figure 11: SymMC quantification metric for the pruning
ability of Alloy SBPs.

error rate of 0.06. In addition, for 58 out of 64 subjects (90.6%),

SymMC approximates the count accurately (with 0.0 error rate),

while ApproxMC can approximate accurately for only one subject.

To further compare SymMC and ApproxMC in terms of the

accuracy in approximating the isomorphic counts, we collect all the

subjects that are solved by both counters and also have the ground

truth. There are in total 45 subjects. The error rate of SymMC

and ApproxMC in approximating the isomorphic count of these 45

subjects is shown in Figure 10. For demonstration purposes, we sort

the subjects based on the error rate of ApproxMC in the ascending

order. We can clearly observe that, as the error rate of ApproxMC

increases, the error rate of SymMC stays almost stable at around 0.0.

In detail, for 43 out of 45 subjects (95.6%), SymMC approximates the

count in a lower error rate than ApproxMC. Overall, results suggest
that SymMC is able to approximate the isomorphic model count of
Alloy specifications with a lower error rate than ApproxMC.

5.3 RQ3: SymMC quantification measurement
We use the 73 solved subjects by SymMC non-isomorphic enumera-

tion as the subjects in studying SymMCquantificationmeasurement

for the pruning ability of Kodkod partial SBPs. Figure 11 shows the

values of SymMC quantification metric in evaluating the pruning

ability of the applied Kodkod partial SBPs for each solved subject

classified by categories. For demonstration purposes, we sort the

subjects within each category based on the metric value in its as-

cending order. Overall, the quantification metric ranges from 0.006

to 1 with an average of 0.759; and the metric value is below 0.5 in

19 subjects. To be specific, for 25 solved Alloy subjects, the quantifi-

cation metric ranges from 0.041 to 1 with an average of 0.784; for

25 solved data structure subjects, the metric ranges from 0.006 to 1

with an average of 0.598; for 7 solved Kodkod subjects, the metric

ranges from 0.167 to 1 with an average of 0.693; the metric is 1 for

all 16 solved n-Queen subjects. The results show that the pruning
ability of Kodkod partial SBPs is often effective and even perfect in
many subjects (e.g., n-Queen problems), while the ability is sometimes
limited in some other subjects (e.g., singly linked list data structure).

6 CONCLUSION
This paper presented a symmetry exploitation tool called SymMC,

which provides the first automatic non-isomorphic models/count

approximation approach for Alloy specifications and provides a

competitive isomorphic count approximation approach for Alloy

specifications. In addition, SymMC provides an automatic quan-

tification measurement on the solution space pruning ability of

Kodkod PaSB. We hope that SymMC could shed light on special-

ized model counting/enumeration for other specifications (e.g., the

specifications of SAT-based finite model finders) or more gener-

alized model counting approaches applicable to multiple kinds of

specifications.

ACKNOWLEDGEMENT
We thank Darko Marinov and reviewers for very helpful comments

and feedback. This work was supported by CCF-1718903, and a

grant from the Army Research Office accomplished under Coop-

erative Agreement Number W911NF-19-2-0333. The views and

conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies,

either expressed or implied, of the Army Research Office or the U.S.

Government. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any

copyright notation herein.

REFERENCES
[1] 2019. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.

[2] Devdatta Akhawe, Adam Barth, Peifung E Lam, John Mitchell, and Dawn Song.

2010. Towards a formal foundation of web security. In 2010 23rd IEEE Computer
Security Foundations Symposium. IEEE, 290–304.

[3] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kastner. 2010.

Detecting dependences and interactions in feature-oriented design. In 2010 IEEE
21st International Symposium on Software Reliability Engineering. IEEE, 161–170.

[4] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, and Peter Stuckey. 2015. SAT:

Projected Model Counting. In International Conference on Theory and Applications
of Satisfiability Testing. Springer, 121–137.

[5] Rolf Backofen and Sebastian Will. 1999. Excluding Symmetries in Constraint-

Based Search. In Principles and Practice of Constraint Programming – CP’99, Joxan
Jaffar (Ed.). Springer, Berlin, Heidelberg, 73–87.

[6] Biljana Bajić-Bizumić, Claude Petitpierre, Hieu Chi Huynh, and Alain Wegmann.

2013. Amodel-driven environment for service design, simulation and prototyping.

In International Conference on Exploring Services Science. Springer, 200–214.
[7] Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski. 2010. Feature and meta-

models in Clafer: mixed, specialized, and coupled. In International Conference on
Software Language Engineering. Springer, 102–122.

[8] Fabian Büttner, Marina Egea, Jordi Cabot, and Martin Gogolla. 2012. Verifica-

tion of ATL transformations using transformation models and model finders. In

International Conference on Formal Engineering Methods. Springer, 198–213.
[9] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. 2013. A scalable

and nearly uniform generator of SAT witnesses. In International Conference on
Computer Aided Verification. Springer, 608–623.

[10] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2016. Algorithmic

Improvements in Approximate Counting for Probabilistic Inference: From Linear

to Logarithmic SAT Calls. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence. AAAI Press, 3569–3576.

[11] I-Ming Chen and Joel W Burdick. 1998. Enumerating the non-isomorphic as-

sembly configurations of modular robotic systems. The International Journal of
Robotics Research 17, 7 (1998), 702–719.

[12] Thomas H. Cormen. 2009. Introduction to Algorithms, Third Edition. (3rd ed. ed.).

MIT Press, Cambridge.

[13] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. 1996.

Symmetry-breaking predicates for search problems. KR 96 (1996), 148–159.

[14] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. 2017. Symmetric expla-

nation learning: Effective dynamic symmetry handling for SAT. In International
Conference on Theory and Applications of Satisfiability Testing. Springer, 83–100.

[15] Jo Devriendt, Bart Bogaerts, Broes de_ Cat, Marc Denecker, and Christopher

Mears. 2012. Symmetry propagation: Improved dynamic symmetry breaking in

SAT. In 2012 IEEE 24th International Conference on Tools with Artificial Intelligence,
Vol. 1. IEEE, 49–56.

[16] Niklas Eén and Niklas Sörensson. 2003. An extensible SAT-solver. In International
conference on theory and applications of satisfiability testing. Springer, 502–518.

[17] Stefano Ermon, Carla Gomes, and Bart Selman. 2012. Uniform Solution Sampling

Using a Constraint Solver as an Oracle. In Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence (Catalina Island, CA) (UAI’12).
AUAI Press, Arlington, Virginia, USA, 255–264.

https://oeis.org/

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wenxi Wang, Yang Hu, Kenneth L. McMillan, and Sarfraz Khurshid

[18] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. 2001. Symmetry

Breaking. In Principles and Practice of Constraint Programming — CP 2001, Toby
Walsh (Ed.). Springer, Berlin, Heidelberg, 93–107.

[19] Filippo Focacci and Michaela Milano. 2001. Global Cut Framework for Removing

Symmetries. In Principles and Practice of Constraint Programming — CP 2001, Toby
Walsh (Ed.). Springer, Berlin, Heidelberg.

[20] Ian P Gent and Barbara Smith. 2000. Symmetry Breaking in Constraint Program-

ming. In ECAI.
[21] Vibhav Gogate and Rina Dechter. 2006. A new algorithm for sampling CSP

solutions uniformly at random. In International Conference on Principles and
Practice of Constraint Programming. Springer, 711–715.

[22] Vibhav Gogate and Rina Dechter. 2007. Approximate counting by sampling the

backtrack-free search space. In AAAI. 198–203.
[23] Vibhav Gogate and Rina Dechter. 2011. SampleSearch: Importance sampling in

presence of determinism. Artificial Intelligence 175, 2 (2011), 694–729.
[24] Carla P Gomes, Joerg Hoffmann, Ashish Sabharwal, and Bart Selman. 2007. From

Sampling to Model Counting.. In IJCAI, Vol. 2007. 2293–2299.
[25] Carla P Gomes, Ashish Sabharwal, and Bart Selman. 2006. Model counting: A

new strategy for obtaining good bounds. In AAAI. 54–61.
[26] Daniel Jackson. 2000. Automating first-order relational logic. In Proceedings

of the 8th ACM SIGSOFT international symposium on Foundations of software
engineering: twenty-first century applications. 130–139.

[27] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT

press.

[28] Eunsuk Kang and Daniel Jackson. 2008. Formal modeling and analysis of a flash

filesystem in Alloy. In International Conference on Abstract State Machines, B and
Z. Springer, 294–308.

[29] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov, and Sarfraz

Khurshid. 2011. Testera: A tool for testing java programs using alloy specifica-

tions. In 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). IEEE, 608–611.

[30] Sarfraz Khurshid and DarkoMarinov. 2004. TestEra: Specification-based testing of

Java programs using SAT. Automated Software Engineering 11, 4 (2004), 403–434.

[31] Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. 2003. A

case for efficient solution enumeration. In International Conference on Theory and
Applications of Satisfiability Testing. Springer, 272–286.

[32] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. 2003. Generalized

symbolic execution for model checking and testing. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
553–568.

[33] Lukas Kroc, Ashish Sabharwal, and Bart Selman. 2008. Leveraging belief prop-

agation, backtrack search, and statistics for model counting. In International
Conference on Integration of Artificial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming. Springer, 127–141.

[34] Jinguo Liu, Yuechao Wang, Shugen Ma, and Yangmin Li. 2010. Enumeration

of the non-isomorphic configurations for a reconfigurable modular robot with

square-cubic-cell modules. International Journal of Advanced Robotic Systems 7,
4 (2010), 31.

[35] Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A novel framework for

automated testing of Java programs. In Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). IEEE, 22–31.

[36] Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A novel framework for

automated testing of Java programs. In Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). IEEE, 22–31.

[37] Brendan D McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II.

Journal of symbolic computation 60 (2014), 94–112.

[38] C Mears. 2009. Automatic symmetry detection and dynamic symmetry breaking
for constraint programming. Ph. D. Dissertation. Ph. D. thesis, Clayton School of

Information Technology, Monash University.

[39] Christopher Mears, Maria Garcia De La Banda, Bart Demoen, and Mark Wallace.

2014. Lightweight dynamic symmetry breaking. Constraints 19, 3 (2014), 195–242.
[40] Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. 2018.

CDCLSym: Introducing effective symmetry breaking in SAT solving. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 99–114.

[41] Patryk Mikos. 2021. Efficient enumeration of non-isomorphic interval graphs.

Discrete Mathematics & Theoretical Computer Science 23 (2021).
[42] Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khurshid.

2007. Korat: A tool for generating structurally complex test inputs. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 771–774.

[43] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai, and Sanjay Singh. 2011.

Formal verification of OAuth 2.0 using Alloy framework. In 2011 International
Conference on Communication Systems and Network Technologies. IEEE, 655–659.

[44] Karen E Petrie, Barbara M Smith, and Neil Yorke-Smith. 2004. Dynamic sym-

metry breaking in constraint programming and linear programming hybrids. In

European starting AI researcher symp. Citeseer.
[45] John A Rice. 2007. Mathematical statistics and data analysis, 3rd Edition. Thomson

Higher Education.

[46] Bas Schaafsma,Marijn JHHeule, andHans VanMaaren. 2009. Dynamic symmetry

breaking by simulating zykov contraction. In International Conference on Theory
and Applications of Satisfiability Testing. Springer, 223–236.

[47] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S Meel. 2019. GANAK: a

scalable probabilistic exact model counter. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence. AAAI Press, 1169–1176.

[48] Ilya Shlyakhter. 2007. Generating effective symmetry-breaking predicates for

search problems. Discrete Applied Mathematics 155, 12 (2007), 1539–1548.
[49] Ilya Shlyakhter. 2007. Generating effective symmetry-breaking predicates for

search problems. Discrete Applied Mathematics 155, 12 (2007), 1539–1548.
[50] Michael Sipser. 1983. A complexity theoretic approach to randomness. In Proceed-

ings of the fifteenth annual ACM symposium on Theory of computing. 330–335.
[51] Mate Soos and Kuldeep S Meel. 2019. Bird: Engineering an efficient CNF-XOR

sat solver and its applications to approximate model counting. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 33. 1592–1599.

[52] Takahisa Toda and Takehide Soh. 2016. Implementing efficient all solutions SAT

solvers. Journal of Experimental Algorithmics (JEA) 21 (2016), 1–44.
[53] Emina Torlak. 2009. A constraint solver for software engineering: finding models

and cores of large relational specifications. Ph. D. Dissertation. Massachusetts

Institute of Technology.

[54] Emina Torlak and Daniel Jackson. 2007. Kodkod: A relational model finder. In

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 632–647.

[55] Dat Hoang Tran and Ryuhei Uehara. 2020. Efficient enumeration of non-

isomorphic ptolemaic graphs. In International Workshop on Algorithms and Com-
putation. Springer, 296–307.

[56] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. Checkmate:

Automated synthesis of hardware exploits and security litmus tests. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
947–960.

[57] Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. 2020. TestMC: testing

model counters using differential and metamorphic testing. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
709–721.

[58] Timothy Van Bremen, Vincent Derkinderen, Shubham Sharma, Subhajit Roy,

and Kuldeep S Meel. 2021. Symmetric Component Caching for Model Counting

on Combinatorial Instances. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 3922–3930.

[59] Willem Visser, Corina S Pǎsǎreanu, and Sarfraz Khurshid. 2004. Test input gener-

ation with Java PathFinder. In Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis. 97–107.

[60] Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S

Meel, and Sarfraz Khurshid. 2020. A Study of Symmetry Breaking Predicates

and Model Counting. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 115–134.

[61] Wei Wei and Bart Selman. 2005. A new approach to model counting. In Inter-
national Conference on Theory and Applications of Satisfiability Testing. Springer,
324–339.

[62] Jiayi Yang, Wenxi Wang, Darko Marinov, and Sarfraz Khurshid. 2020. AlloyMC:

Alloy Meets Model Counting. In 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Demo
Papers. 1541–1545.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Alloy Specifications
	3.2 Kodkod Partial Symmetry Breaking for Alloy Specifications

	4 SymMC
	4.1 Overview
	4.2 Enhanced Kodkod with Symmetry Info Extraction
	4.3 The AllSAT Model Enumerator
	4.4 The Non-Isomorphic Model Estimator
	4.5 The Isomorphic Count Estimator

	5 Experimental Evaluation
	5.1 RQ1: SymMC Performance in Approximating Non-Isomorphic Models
	5.2 RQ2: SymMC Performance in Approximating the Isomorphic Count
	5.3 RQ3: SymMC quantification measurement

	6 Conclusion
	References

