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ABSTRACT
Model counting is the problem for finding the number of solutions
to a formula over a bounded universe. This is a classic problem in
computer science that has seen many recent advances in techniques
and tools that tackle it. These advances have led to applications
of model counting in many domains, e.g., quantitative program
analysis, reliability, and security. Given the sheer complexity of the
underlying problem, today's model counters employ sophisticated
algorithms and heuristics, which result in complex tools that must
be heavily optimized. Therefore, establishing the correctness of im
plementations of model couuters necessitates rigorous testing. This
experience paper presents an empirical study on testing industrial
strength model counters by applying the principles of differential
and metamorphic testing together with bounded exhaustive input
generation and input minimization. We embody these principles in
the TestMC framework, and apply it to test four model counters,
including three state-of-the-art model couuters from three different
classes. Specifically, we test the exact model counters projMC and
dSharp, the probabilistic exact model couuter Ganak, and the prob
abilistic approximate model counter ApproxMC. As subjects, we
use three complementary test suites of input formulas. One suite
consists of larger formulas that are derived from a wide range of
real-world software design problems. The second suite consists of
a bounded exhaustive set of small formulas that TestMC generated.
The third suite consists offormulas generated using an off-the-shelf
CNF fuzzer. TestMC found bugs in three of the four subject model
counters. The bugs led to crashes, segmentation faults, incorrect
model counts, and resource exhaustion by the solvers. Two of the
tools were corrected subsequent to the bug reports we submitted
based on our study, whereas the bugs we reported in the third tool
were deemed by the tool authors to not require a fix.

CCS CONCEPTS
• Software and its engineering ---7 Software testing and de
bugging; Empirical software validation.
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Model counting, metamorphic testing, differential testing, delta
debugging
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1 INTRODUCTION
Model counting is the problem for finding the number of solutions
to a formula over a bouuded universe. This is a classic problem in
computer science, which generalizes the satisfiability problem, i.e.,
whether a formula has a solution or not. Recent years have seen
many advances in techniques and tools for model counting [20].
These advances have led to many applications of model counting
in various domains, e.g., quantitative program analysis [44], relia
bility [26], and security [7]. To handle the huge complexity of the
underlying problem, today's model counters employ sophisticated
algorithms and heuristics, which result in complex tools that must
be heavily optimized for high efficiency. Therefore, establishing the
correctness of implementations of model counters - even if they
are proven correct on paper - necessitates rigorous testing.

This experience paper presents an empirical study on testing
industrial strength model counters by applying the principles of
four well-studied testing approaches: 1) bounded exhaustive in
put generation where the system under test is tested against all
non-equivalent inputs within a bouud on the input size [50]; 2) dif
ferential testing where the outputs of multiple systems under test
are compared to detect faulty behaviors when some outputs do not
match [36]; 3) metamorphic testing where metamorphic relations
among results for different inputs are used as surrogate for test or
acles [47]; and 4) input minimization using delta debugging where
inputs that cause failures are minimized to create smaller fault
revealing inputs [58]. We embody these principles in the TestMC
framework, and apply it to test a variety of model counters.

Our specific focus is the common class of model counters for
propositional logic. Propositional model counting is a #P-complete
problem, which generalizes the propositional satisfiability (SAT)
problem [12], and hence is both highly useful and extremely expen
sive to solve in practice. It has many applications such as Bayesian
belief networks, knowledge compilation, plauuing, and combinato
rial designs [22, 24, 45]. Propositional model couuters take as input
formulas in conjunctive normal form (CNF), just as SAT solvers [23].
A CNF formula is a conjunction (logical and) of clauses, where each
clause is a disjunction (logical or) of literals, where each literal is
a boolean variable or its negation. The standard CNF file format
that commonly used model counters and SAT solvers support is
the DIMACS format [9], which is a text file where each clause is
essentially a list of literals on a new line.
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TestMC's test generation module implements a dedicated gener
ator for CNF files in the DIMACS format. Due to the simplicity of
the DIMACS format, generating CNF files is relatively straightfor
ward, e.g., a non-deterministic generator that chooses the number
of clauses, number of variables, and the literals in each clause suf
fice. To optimize generation, our generator first creates a set of
unique clauses based on the desired number of variables, then cre
ates CNF formulas by selecting subsets of the clauses with respect
to the desired maximum number of clauses, and finally writes each
formula to a file. Due to the nature of bounded exhaustive testing,
even for small bounds, there can be a fairly large number of CNF
formulas. For example, for a bound of 4 variables (i.e., 8 literals)
and 4 clauses, there are 6.65 million uuique CNF formulas (modulo
re-ordering of clauses within a formula).

We apply TestMC to test four model couuters from three general
classes of model counters. The model couuters are: projMC [34] and
dSharp [37], which are exact model counters; Ganak [48], which is
a probabilistic exact model counter; and ApproxMC [18], which is a
probabilistic approximate model counter. Three of the select model
counters, namely projMC, Ganak, and ApproxMC, are the current
state-of-the-art in their respective classes.

Each of the four model counters we choose supports projected
model counting, where the solver allows computing the counts with
respect to a given subset of variables, rather than the default of
all variables. Support for projected model counting is particularly
important for computing solutions that are relevant to the problem
domain because the original problem rarely exists in CNF, and
translation to CNF typically introduces auxiliary variables and
results in a formula that is equisatisfiable but not equivalent (and
can have a different number of solutions from the original formula
with the differences being on the values of the auxiliary variables
that exist only in CNF).

Since a model counter's output is a non-negative integer, dif
ferential testing mostly requires just a simple integer comparison.
Since our test subjects include a probabilistic exact and a probabilis
tic approximate counter, the comparator we define allows defining
a tolerance threshold for the equality check. To complement differ
ential testing, especially in cases when differential testing detects
a discrepancy between the counts of model counters or only one
model couuter produces a result and all others timeout, we define
a sanity check and four metamorphic relations that are based on
propositional equivalences, primary variables, and formula simpli
fication.

As subjects, we use three test suites of input formulas. One suite
consists of significantly larger formulas that are derived from a
wide range of software design problems (SDP) that are part of the
standard distribution of the well-known Alloy tool-set [31]. The sec
ond suite includes a bounded exhaustive set of small formulas that
TestMC generated. The third suite contains the formulas generated
by an off-the-shelf CNF fuzzer [17].

TestMC found bugs in three model counters - projMC, dSharp,
and Ganak. The bugs caused four different kinds of failures: crashes,
segmentation faults, incorrect results, and resource exhaustion.
The fault revealing input formulas were minimized using delta
debugging, and form a part of the bug reports that were submitted
to the tools' authors. We submitted bug reports for all the three
tools that TestMC reported as faulty. Two of the tools (projMC
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and Ganak) were corrected subsequent to our bug reports. The
bugs in the third tool (dSharp) were deemed by the authors to not
necessitate a fix.

This paper makes the following contributions:

• Framework. We introduce TestMC, the first framework for
testing the functional correctness of model counters. Our
framework performs bounded-exhaustive test input genera
tion using a dedicated CNF formula generator, differential
testing using a special purpose comparator, metamorphic
testing using a family of metamorphic relations for model
counters, and input minimization using delta debugging.
TestMC defines one sanity check and four metamorphic rela
tions as test oracles. The sanity check and all four metamor
phic relations utilize domain knowledge, specifically the fact
that we are testing model counters for formulas in propo
sitionallogic. Therefore, these metamorphic relations can
also be utilized for SAT problems. We employ TestMC to
generate a corpus of 6.65 million CNF formulas, which serve
as bounded exhaustive test suites that can be used by other
model counters and SAT solvers.

• Study. We use TestMC to test four model couuters, including
two exact model counters, one probabilistic exact model
counter, and one probabilistic approximate model counter.
We test the model counters against three suites of subjects:
a) 203 significantly larger CNF subjects derived from a wide
class of software models; b) the bounded exhaustive suite of
6.65 million small CNF subjects generated by TestMC; and c)
large number of CNF subjects (10 million) generated using
an off-the-shelf CNF fuzzer.

• Lessons Learned. We present a set oflessons learned during
our experience of testing model counters.

With model counters and other backend constraint solvers be
coming more and more complex, there is an increasing need for
thoroughly testing their functionality, especially as their use in
creases in critical domains, such as security. We believe our work
provides a practical framework that is based on well-understood
testing techniques and can handle real-world tools. We hope our
experience with TestMC proves valuable in the development of cor
rect model counters and solvers, and for more effective deployment
of model counters.

2 EXAMPLES
This section presents small illustrative examples to describe the ba
sics of CNF formulas, and the model counting and projected model
counting problems. We also present some small CNF formulas as
illustrative examples that were generated by TestMC and uucovered
bugs in some of the model counters we tested.

2.1 CNF and model counting
Consider the boolean formula "f = (a V ~b) /\ (~a vb)", where a
and b are boolean variables. Since f has 2 variables, there are a total
of 4 possible assignments to a and b: 1) a = false, b = false; 2) a =

false, b = true; 3) a = true, b = false; and 4) a = true, b = true. Of
these, the following 2 assignments are solutions, i.e., assignments
such that f is true: 1) a = true, b = true; and 2) a = false, b = false.
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Since f is a conjunction of 2 clauses, f is already in CNF. The
following file shows an encoding off in the DIMACS CNF format:
p cnf 2 2
1 -2 0

-1 2 0

The first line, which begins with the character" p" defines the
type offormula (i.e., cnf), the number of variables (i.e., 2), and the
number of clauses (i.e., 2) respectively. Each subsequent line of text
shown includes a clause. The variables are identified by positive
integer ids. A positive literal is just a variable, and represented by
the corresponding variable's id; a negative literal is the negation
of a variable, and represented by the negation of the correspond
ing integer id. Each clause ends with the number O. For example,
representing variable "a" as number "1" and "b" as number 2, the
clause "(a V ~b)" is represented in CNF as "1 -2 0". Comments
may be included in a CNF in lines that start with the character "c".
Given this input CNF file for formula f, all four model counters
that we use as test subjects, namely ApproxMC, dSharp, Ganak,
and projMC report 2 as the model count, which is the correct result.

2.2 Projected model counting
We next illustrate the projected model counting problem [8], where
the model count for the input formula is with respect to a subset,
say W, of the set containing all variables, say V, in the formula, so
only solutions that differ on at least one value of some variable in
W are considered unique. The variables in W are termed as primary
variables.

Consider the formula 9 = (a /\ b) V (c /\ d), which is not
in CNF. We can use logical equivalences to translate this formula
into CNF, e.g., as (a V c) /\ (a V d) /\ (b V c) /\ (b V d).
While using logical equivalences suffices to translate any proposi
tional formula into CNF, such translation can cause an exponen
tial increase in the formula size; to avoid such increase, practi
cal tools use alternative translations, which introduce new vari
ables and preserve the formula's satisfiability but may not pre
serve its solution count [8]. To illustrate, 9 can alternatively be
translated by introducing auxiliary variables u and v as follows:
h = (u V v) /\ (~u V a) /\ (~u V b) /\ (~v V c) /\ (~v V d).
Any solution to h contains a solution to g, and any solution to 9 can
be extended to form a solution for h. However, the total number of
solutions for 9 is 7, and the total number of solutions for h is 9, i.e.,
9 and h have different model counts. Indeed, the space of candidate
solutions for 9 and h have different sizes, which are 24 = 16 and
26 = 64 respectively.

The support for projected model counting in modern model
counters makes utilizing them much more feasible since they can be
employed simply by translating to CNF without worrying about the
translation creating an exponentially longer formula, or the model
counter providing an inaccurate count due to auxiliary variables. As
an illustration of projected model counting, consider using projMC
for computing the projected model count for formula h with respect
to the set of variables in g. The following CNF file represents h:
c ind 1 2 3 4 0
P cnf 6 5
5 6 0
-5 1 0
-5 2 0
-6 3 0
-6 4 0
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where variables a, b, c, d, u, and v are represented using integers
1,2,3,4, 5, and 6 respectively. The comment in the first line (that
starts with a "c") uses the format used by ApproxMC and Ganak to
specifY the list of primary variables, which are also termed inde
pendent variables; this line states that variables with ids 1, 2, 3, and
4 are primary variables; the line terminates with "0". In contrast
to ApproxMC and Ganak, projMC and dSharp require the list of
primary variables to be input separately from the CNF formula. For
convenience, we show examples where the primary variables are
listed as a comment as required by ApproxMC and Ganak; when
invoking projMC and dSharp, we provide the lists separately as
required by them. projMC reports 7 as the model count, which is
correct and the same as the model count for the formula g.

2.3 Example failures in Ganak, dSharp and
projMC

We next show four CNF formulas that lead to failures in the Ganak,
dSharp and projMC model counters. Specifically, we show the small
est CNF formulas that exhibit these failures.

Example failure (incorrect count) in Ganak on a formula
generated by the TestMC bounded-exhaustive input gener
ator
c ind 1 0
P cnf 2 1
1 2 0

This formula is a disjunction of two variables, and there is only
one primary variable (that has id "1"). The formula has three so
lutions but only two of them are unique with respect to just the
primary variable. For this input formula, Ganak incorrectly reports
the model count as 3. In contrast, the three other model counters
we tested report the correct count of 2.

Example failure (incorrect count) in dSharp on a formula
generated by the TestMC bounded-exhaustive input genera
tor
c ind 1 0
P cnf 1 2
1 0
-1 0

This formula has one variable and two clauses and represents a con
tradiction since it is a conjunction of the variable and its negation.
The only variable in the formula is the primary variable. dSharp
outputs a model count of 1, which is wrong since the formula is
unsatisfiable.

Example failure (Assertion Error) in Ganak on a formula
generated by the TestMC bounded-exhaustive input gener
ator
It turns out that the above formula also reveals another bug in
Ganak. In fact, given this formula, Ganak gives an assertion error.
In contrast, the other two model counters, projMC and ApproxMC,
produce the correct model count of 0 for this formula.
linux:-/Desktop/ganak/build$ python3 ganak.py -p exampleb.cnf
rm: cannot rerrove 'mis. out': No such file or directory
rm: cannot rerrove 'mis. timeout': No such file or directory
c Outputting solution to console
c GANAK version 1.0.0
The value of delta is 0.05
The value of hash range is 64xl
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ganak: I .. . /Desktop/ganaklsrc/instance. h: 215: Clauselndex
Instance: : addClause(std: :vector<Li teralID>&):
Assertion .! isUni tClause(li terals[0]. negO) , failed.
The total user time taken by ganak is: 0.0

Example failure (seg fault) in projMC on a formula derived
from a software design problem
linux: -/Desktop/author_projmc$ ./projMC_linux example. cnf
-fpv=exanple. var
c Benchmark Information
c Nurrber of variables: 1794
c Nurrber of clauses: 3020
c Nurrber of li terals: 6630
c Integer rrode
c
c Option list
c Caching: 1
c Variable heuristic: VSADS
c Phase heuristic: TRUE
c Partitioning heuristic: YES + graph reduction +
equivalence sinplication
c
Segmentation fault (core dumped)

projMC gives a segmentation fault on this formula. Due to space
limitations, this formula together with other example formulas that
cause failures are provided at the GitHub repositoryl.

3 MODEL COUNTERS UNDER TEST
This section discusses the essential background and gives a brief
description of the model counters that form our test subjects. We
also state the specific versions of the tools we evaluated.

The state-of-the-art model counters can be classified into three
categories: (1) exact model counters that output the exact number
of solutions; (2) probabilistic exact model counters that output
the counts within a given confidence level; and (3) approximate
model counters that give counts within a given confidence level
and tolerance score. As test subjects, we choose a state-of-the
art model counter in each of the three categories, as well as an
earlier model couuter that was among the first to support projected
model counting. Specifically, we choose the following four model
counters: probabilistic approximate model couuter ApproxMC [18]
(Section 3.1), the probabilistic exact model counter Ganak [48]
(Section 3.2) and the exact model couuters dSharp [37] (Section 3.3)
and projMC [34] (Section 3.4). All four of these model counters
support projected model couuting.

3.1 ApproxMC
ApproxMC [18] is a state-of-the-art approximate model counter that
is now in its third generation. The key idea behind ApproxMC is to
employ universal hashing to iteratively partition the solution space
into smaller regions that contain approximately the same number of
solutions by adding XOR constraints, and finally count the number
of solutions in one region, and compute the estimate for the full
space. A special SAT solver called CryptoMiniSAT [49], which
supports XOR constraints, is iteratively invoked by ApproxMC. The
use of universal hash functions provides theoretical guarantees for
the couuting approximation. Moreover, the number ofSAT calls was
reduced from the initial O(n) to O(log(n)) using the dependency
information among different SAT calls. Also, a new architecture for
efficiently solving XOR constraints which are the representation of
the hash function was proposed more recently. Past experiments
showed the model counting by ApproxMC was efficient as well

1https:llgithub.eom/rnuharnrnadusman93/TestMC-ASE2020
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as remarkably close to the exact counts. For our experiments, we
use the latest version of ApproxMC 2 (ApproxMCv3, Git commit ID
23d4439) with the default seed (i.e., 1).

3.2 Ganak
Ganak [48] outputs the projected model counts within the given
confidence leveL Ganak is built on top of sharpSAT [52]. Ganak
relies on probabilistic component caching and universal hashing
which significantly improve the counting performance. Moreover,
it employs a number of heuristics on top of sharpSAT including
probabilistic component caching, new variable branching heuris
tic, new phase selection heuristic, independent support heuristic,
exponentially decaying randomness heuristic, and learn and start
over heuristic. In our evaluation, we used Ganak3 (Git commit ID
3620813).

3.3 dSharp
dSharp [37] is among the first tools for projected model counting.
Similar to Ganak, it builds upon earlier work on sharpSAT [52],
and introduces four more components namely dynamic decom
position, implicit binary constraint propagation (IBCP), conflict
analysis, and component caching. Dynamic decomposition breaks
down the problem into two components during the search and
then adds each component as a child to an "AND" node. IBCP is
proposed as a look-ahead strategy to select the uuassigned variable
and evaluate the impact of the assignment in advance. Conflict
analysis is applied for non-chronological backtracking and learning
mechanism. Finally, dSharp utilizes component caching where the
broken components are stored for fast retrieval. In addition to these
four components, it also added support for solving deterministic
decomposable negation normal form (d-DNNF) formulas which
are translated into directed acyclic graphs. We used dSharp-ASp4

(BitBucket commit ID 791668a) for experiments.

3.4 projMC
projMC [34] is a state-of-the-art exact model counter that uses a
recursive algorithm defined for deterministic disjuuctive form. pro
jMC first creates partitions of the original CNF formula such that
they are pairwise variable independent using disjunctive decompo
sition. It then calculates the number of partitions and solves each
partition recursively by checking if there is a satisfiable solution. If
so, the couuts of each partition are combined as a total model couut
of the problem; otherwise, it reports a contradiction. projMC5 is
available as an executable file 6 .

4 TESTMC FRAMEWORK
This section introduces our TestMC framework for testing model
couuters and describes its key components.

2 https:llgithub.eom/rneelgroup/ApproxMC
3 https:llgithub.eom/rneelgroup/ganak
4 https:1Ibitbueket.org/hazldsharp- aspl sreldefault!
sprojMC is proprietary software. Hence, there is no Git commit ill.
6http://www.eril.univ-artoisJr/ke/projrne.htrnl
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Figure 1: TestMC framework. config is the maximum num
ber of boolean variables and clauses to define the size bound
for bounded exhaustive input generator.

4.1 Overview
Figure 1 shows an overall architecture of the TestMC framework.
There are four basic components: (1) bounded exhaustive test gen
eration (Section 4.2); (2) differential testing (Section 4.3); (3) meta
morphic testiug (Section 4.4); and (4) iuput miuimization with delta
debugging (Section 4.5). To test the input model counters, TestMC
uses a pool of CNF formulas that serve as test inputs to the model
counters. TestMC uses differential testiug and metamorphic testiug
to determine test failures. Specifically, for each CNF input in the
pool, TestMC iuvokes each model counter under test and compares
their results (with respect to a threshold on the allowed difference).
In cases where differential testing detects a discrepancy between
the counts of model counters or only one counter returns a result
and the others timeout, metamorphic testing helps to validate the
returned count. Once failures are found, TestMC uses input mini
mization based on delta debuggiug [57] to reduce the fault-revealiug
inputs.

The current pool of CNF iuput files contaius formulas from three
sources. One source is CNF formulas translated from software de
sign problems (SDP) that are included in the standard distribution
of the well-known Alloy tool-set [1, 32], the second source is our
bounded-exhaustive generator, and the third source is CNF formu
las generated using an off-the-shelf CNF fuzzer [17]. Alloy allows
building and analyzing designs of software systems, and has been
used in many applications, including analyzing distributed algo
rithms [56] and findiug security bugs [39]. Alloy's backend analyzer
translates Alloy designs to CNF formulas, and employs off-the-shelf
SAT solvers, which allows Alloy users to check desired properties
of their designs. The Alloy distribution includes a variety of real
world problems and hence provides a valuable source of CNFs as
test iuputs. The CNF fuzzer allows to randomly create a large num
ber of CNF formulas and TestMC bounded exhaustive generator
creates formulas that are helpful in checking corner cases and giv
ing developers small fault revealing CNF formulas which makes it
easier for them to debug their tools.
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CNF generate(int maxVars, int maxClauses) {
Set<Integer> literals = createAllLiterals(maxVars);
Set<Clause> allClauses = createAllClauses(literals);
allClauses = reduce(allClauses);
int numClauses = choose(l, maxClauses);
CNFBody body = chooseSubset(numClauses, allClauses);
int projVars = choose(l, maxVarld(body));
CNF formula = addProjVarlnfo(projVars, body);
return formula;

}

Figure 2: TestMC bounded exhaustive generation algorithm.

pseudo-code. The iuput maxVars and maxClauses define the maximum
number of boolean variables and the maximum number of clauses
respectively to define the size bound for the inputs generated. The
helper method createAllLi terals returns a set that contaius all liter
als with respect to the input number of variables. In general, for n
variables, there are 2n literals. The helper method createAllClauses

returns a set of all clauses that can be formed usiug a subset of the
input set of literals where each clause is viewed as set of literals.
For example, the CNF clauses "1 -2 0" and "-2 1 0" are considered
to be the same and only one of them is generated. Breaking such
symmetries is essential for applying bounded-exhaustive testing 
even for small bounds. The helper method reduce allows removing
some clauses from the set, which are considered not iuterestiug; at
present, we remove clauses that contaiu a tautology, i.e., a variable
and its negation since that clause is always satisfied regardless of
the assignment to that variable.

The helper method choose represents non-deterministic choice
(implemented similar to Verify. getInt(,) function of the Java Path
Finder [30]) that selects a number between 1 and maxClauses (inclu
sive); thus, numClauses is the number of clauses that the generated
formula will contaiu. The helper method chooseSubset also represents
non-determiuistic choice, which chooses a subset of size numClauses

from the set allClauses. In general, for x literals, there are 2x - 1
clauses that contain at least one literaL Selecting a set of clauses
allows the algorithm to break more symmetries as two CNF for
mulas that differ only by the order in which the clauses appear in
the formula are considered the same and only one of them will
be generated. Next, the algorithm non-deterministically chooses
a number of variables that are primary variables. Finally, the CNF
formula is initialized and returned.

To see an illustration of the test generation algorithm, assume
maxVars = 2 and maxClauses = 3. Then, li terals = {I, 2, -1, -2}, and
there are 15 (24 - 1) clauses that can be formed as subsets of these
4 literals:

4.2 Bounded Exhaustive Generation
We designed and implemented a dedicated generator for creating
bounded-exhaustive test suites consistiug of files iu CNF format for
testing model counters that support computing projected model
counts. Figure 2 shows our iuput generation algorithm iuJava-like
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Clause 1 = {1}
Clause 3 = {-1}
Clause 5 = {1, 2}
Clause 7 = {1, -2}
Clause 9 = {2, -2}
Clause 11 = {1,2,-1}
Clause 13 = {1, -1, -2}
Clause 15 = {1,2,-1,-2}

Clause 2 = {2}
Clause 4 = {-2}
Clause 6 = {1,-1}
Clause 8 = {2,-1}
Clause 10 = {-1,-2}
Clause 12 = {1,2,-2}
Clause 14 = {2,-1,-2}
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The algorithm prunes clause 6, 9, 11, 12, 13, 14 and 15 since they
contain a tautology. This leaves 8 clauses that are used for gen
erating CNF formulas. The algorithm creates all subsets of up to
3 clauses. There are (~) = 8 subsets of size 1; @ = 28 subsets of
size 2; and (~) = 56 subsets of size 3. Thus, there are 92 unique
subsets with 1, 2, or 3 clauses. Since there are 2 variables in total we
can project on one of them or on both of them; if the CNF formula
only has one variable, we only use that as the primary variable. The
total number of CNF formulas for the size bound maxVars = 2 and
maxClauses = 3 is 181. For testing the subject model counters in this
paper, we set the size bound to maxVars = 4 and maxClauses = 4. There
are 255 (28 - 1) clauses that can be formed as subsets of 8 literals.
The algorithm prunes 175 clauses which contain a tautology, which
leaves 80 clauses that are used for generating CNF formulas. The
algorithm creates all subsets of up to 4 clauses. There are (81°) = 80
subsets of size 1; (8~) = 3160 subsets of size 2; (83°) = 82160 sub
sets of size 3; and (8;) = 1581580 subsets of size 4. Thus, there are
1,666,980 unique subsets with 1, 2, 3 or 4 clauses. Since there are
4 variables in total, we can have up to 4 projection variables for a
formula. Note that the number of projection variables is always :0;

the number of variables in the formula. It gives 6.65 million CNF
formulas.

4.3 Differential Testing
For differential testing, TestMC checks for differences in the model
counters' outputs; if they differ, it checks if a majority agrees and
if it does, the minority is considered as likely faulty. Since our test
subjects include a probabilistic exact and a probabilistic approxi
mate counter, the comparator we define allows the user to define a
tolerance for the equality check (only for ApproxMC and Ganak).
For our experiments, we set the tolerance to 10% (two outputs mis
match if they are not within 10% of each other) based on a recent
study [55].

4.4 Metamorphic Testing
To complement differential testing, especially in cases when differ
ential testing detects a discrepancy between the counts of model
counters or only one model counter produces a result and all others
timeout, we define one sanity check and four metamorphic rela
tions as test oracles. The sanity check and all four relations utilize
domain knowledge, specifically the fact that we are testing model
counters for formulas in propositional logic.

Let f be a formula in propositional logic with n variables, so the
space of all possible boolean assignments to the variables has size
2n. Assume there are k primary variables where k :0; n; assume
(without loss of generality) the primary variable ids are 1, ... , k. Let
mc(f) represent the model count for f. Let pmc(f, k) represent the
projected model count for f with respect to the k primary variables.
Let fx=v be f where the variable x is assigned the boolean value v.

Sanity Check (SCI): pmc(f, k) :0; 2k , i.e., the projected model
count over k variables must be no more than 2k . It is simple to
evaluate this relation: take 1092 of the tool's output and compare
it with k; if k is smaller, the tool's output is faulty. SCI does not
require any additional invocation of the model counter.

714

Muhammad Usman, Wenxi Wang and Sarfraz Khurshid

Metamorphic relation I (MRI): pmc(f, k) ?: pmc(fv=true, k)
where v is a variable in f, i.e., the model count for formula f is
greater or equal to the model count for reduced formula fv=true,
i.e., f where v is set to true. Given variable v, we can create the
CNF formula for fv=true simply by adding the clause "v 0" to the
original CNF for f. In our experiments we set v to 1. MRI requires
one additional invocation of the model counter.

Metamorphic relation 2 (MR2): pmc(f, k) = pmc(fv=true, k) +
pmc(fv=falseo k) where v is a variable in f, i.e., the model count
for formula f is the sum of the model counts for reduced formulas
fv=true, i.e., f where v is set to true, and fv=false' i.e., f where v is
set to false. Given variable v, we can create the CNF formulas for
fv=true and fv=false simply by adding the clauses "v 0" and "-v 0"

respectively to the original CNF for f. In our experiments we set v
to 1. MR2 requires two additional invocations of the model counter.

Metamorphic relation 3 (MR3): Let y be a clause in f and z be a
literal in y. Let y' be a clause containing all literals originally in y
and literal z added again. Thus, replacing y with y' should have no
effect on the original formula f (y' is equivalent to y). In this case,
pmc(f, k)=pmc(f - y + y', k), i.e., the count of original formula
should be equal to the count of the original formula with y being
removed and y' added. MR3 requires one additional invocation of
the model counter.

Metamorphic relation 4 (MR4): Let y' be a clause containing a
tautology. Let f' be another formula which includes all the clauses
in formula f and one more clause y' (clause containing tautol
ogy). Thus, both the original formula f and the new formula f'
should have the same count since adding a tautology to the original
formula should have no effect on the model count. In this case,
pmc(f, k)=pmc(f + y', k), i.e., the count of the original formula
should be equal to the count of the new formula with y' added.
MR4 requires one additional invocation of the model counter.

4.5 Input Minimization with Delta Debugging
To facilitate debugging, TestMC supports input minimization using
delta debugging for fault-revealing inputs [2]. The simplicity of
the CNF file format helps with effective minimization since any
subset of the CNF clauses is itself a CNF formula; to create a new
CNF file using a subset, we populate the new file with the selected
clauses and update the number of clauses listed in the declaration
line (that starts with "p"). We follow a standard method for input
minimization that uses binary search to find a sequence of clauses
in the original formula such that the failure recurs [59]. In addition,
we create a pair of two CNF files (C, D) where C and D include
subsets of clauses in the original fault revealing input such that C
does not cause a failure, D does cause a failure and D includes all
the clauses in C and one additional clause. We expect the pair (C, D)
to assist in fault localization [43] where the user can compare the
two traces on inputs that are almost identical and differ by only
one clause.
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Table 1: Basic information about the test suite.

SDPGen BEGen FuzzGen
CNF Formulas Total 203 6,649,854 10,000,000

Min 28 1 2

Total Vars
Max 93,764 4 34,755
Avg 4,764.12 3.99 11.39
Std 9,028.88 0.09 27.56
Min 3 1 2

Primary Vars
Max 2,048 4 34,755
Avg 201. 72 2.50 11.39
Std 269.52 1.12 27.56
Min 31 1 3

Total Clauses
Max 291,349 4 123,891
Avg 11,066.47 3.95 29.40
Std 25,640.81 0.23 95.61

5 EXPERIMENTAL EVALUATION
This section describes the test suites employed for testing model
counters, evaluates TestMC using three research questions and
presents examples of bugs and fixes of the tested model counters.

5.1 Test Suite
This section describes the CNF formulas used by TestMC for testiug
model counters. The test suites are classified into three categories:
a) test suite (denoted as SDPGen) containing 203 large CNF formu
las derived from a wide class of software design problems; b) test
suite (denoted as BEGen) containing small CNF formulas created
by bounded exhaustive generator; and c) test suite (denoted as Fuz
zGen) containing a large number of formulas with varied scales
generated by an off-the-shelf CNF fuzzer called FuzzSAT [17]. Ta
ble 1 summarizes detailed iuformation about each test suite, iuclud
ing the total number of test cases, minimum, maximum, average,
and standard deviation of the number of total variables, primary
variables, and total clauses of the input formula, respectively.
Formulas generated using software design problems (SDP
Gen) Alloy is able to translate modeled real-world problems to
CNF formulas, that are solved by backend SAT solvers for check
ing desired properties. The Alloy distribution includes a variety
of real-world problems and hence provides a valuable source of
CNF formulas as a potential test suite. There are 203 large CNF
formulas generated from software design problems iu Alloy [1, 32].
The number of total variables ranged from a minimum of 28 to a
maximum of 93,764, with an average of 4,764.12. The number of
primary variables ranged from a minimum of 3 to a maximum of
2,048, with an average of 201.72. The number of clauses ranged
from a minimum of31 to a maximum of291,349, with an average
of 11,066.47.
Formulas generated using a bounded exhaustive generator
(BEGen) A total of 6,649,854 (6.65 million approximately) CNF
formulas were generated by the bounded-exhaustive generator
usiug the algorithm described iu Section 4.2. These formulas are iu
small scale. The number of total variables ranged from a miuimum
of 1 to a maximum of 4, with an average of 3.99; the number of
primary variables ranged from a minimum of 1 to a maximum
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of the total number of variables in the formula, with an average
of 2.50. The number of clauses ranged from a minimum of 1 to a
maximum of 4, with an average of 3.95. These formulas are helpful
in checking corner cases and more importantly give developers
small fault revealiug CNF formulas which makes it easier to debug
the tooL
Formulas generated using off-the-shelfCNF fuzzer (FuzzGen)
A total of 10,000,000 (10 million) formulas were randomly generated
by CNF fuzzer called FuzzSAT [17] for rigorous testing of model
couuters. The number of total variables ranged from a miuimum of
2 to a maximum of 34,755, with an average of 11.39. The number of
clauses ranged from a miuimum of 3 to a maximum of 123,891, with
an average of 29.40. FuzzSAT considers all variables to be primary
variables (number of primary variables is always equal to the num
ber of total variables) which may cause the testing on projected
model counting ineffective. As part of future work, we plan to add
support to FuzzSAT for generating formulas with different sets of
primary variables, by selecting them randomly.

The Bounded-Exhaustive Generator as well as all 3 test suites
(16.65 million CNF formulas iu total) are available at: https://github.
com/muhammadusman93/TestMC-ASE2020. All experiments were
performed on Ubuntu 16.04 with an Intel Core-i7 8750H CPU
(2.20 GHz) and 16GB RAM.

5.2 Research Questions
This section answers following three research questions.

• RQ1: How Effective is TestMC Differential Testing Mod
ule in Finding and Categorizing Bugs/Failures in Model
Counters?

• RQ2: How Effective are the TestMC Metamorphic Test
ing Relations in Finding Bugs/Failures in Model Coun
ters?

• RQ3: How Effective is Test Input Minimization with
Delta Debugging?

RQ1: How Effective is TestMC Differential Testing Module
in Finding and Categorizing Bugs/Failures in Model Coun
ters?
TestMC was able to fiud 4 different types of bugs/failures iu 3 model
counters. The first bug type called WSat describes that a model
couuter returns the wrong satisfiability of the iuput formula, specif
ically, returns SAT for UNSAT problem. The second bug type called
WCnt indicates that a model counter gives a wrong count of the
formula. If the model counter crashes due to segmentation fault, it
is classified as SegFault bug. Lastly, if the model couuter termiuates
unexpectedly, it is classified as Crash bug. Table 2 summarizes the
results of each bug type that happened in each model counter, for
each test suite. Since our test subjects include a probabilistic exact
and a probabilistic approximate counter, the comparator we defiue
allows the user to defiue a tolerance for the equality check (only for
ApproxMC and Ganak). For our experiments, we set the tolerance
to 10% (two outputs mismatch if they are not within 10% of each
other) based on a recent study [55].

For Ganak, TestMC found two types of bugs: WCnt in 3,996,331
cases and Crash in 56,617 cases, which strongly indicates the exis
tence of bugs iuside the tooL We fouud that all of the Crash cases iu
Ganak were assertion failures. For dSharp, TestMC found two types
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Table 2: Results of applying differential testing on Ganak, dSharp and projMC for each test suite are shown. ApproxMC is not
shown because it did not give faulty results.

Ganak

Input WSat WCnt SegFault Crash Total
SDPGen 0 77 0 4 81
BEGen 0 3996254 0 48344 4044598
FuzzGen 0 0 0 8269 8269
Total 0 3996331 0 56617 4052948

dSharp

Input WSat WCnt SegFault Crash Total
SDPGen 0 0 0 18 18
BEGen 48224 0 0 0 48224
FuzzGen 7490 0 0 0 7490
Total 55714 0 0 18 55732

projMC

Input WSat WCnt SegFault Crash Total
SDPGen 0 0 2 0 2
BEGen 0 0 0 0 0
FuzzGen 0 0 0 0 0
Total 0 0 2 0 2

Table 3: Results of applying Sanity check and Metamorphic relations for formulas on which differential testing detected
discrepancy. Total number of these formulas is given in brackets in Input column of table. n_n indicates that there was no
formula on which differential testing detected discrepancy.

Ganak

Input SCI MRI MR2 MR3 MR4
SDPGen (77) 48 15 50 0 0
BEGen(3996254) 2902390 16386 1972934 0 0
FuzzGen(O)
Total 2902438 16401 1972984 0 0
Percentage 72.63% 0.41% 49.37% 0% 0%

dSharp

Input SCI MRI MR2 MR3 MR4
SDPGen(O)
BEGen(48224) 0 0 13705 0 0
FuzzGen(7490) 0 0 2 0 0
Total 0 0 13707 0 0
Percentage 0% 0% 24.60% 0% 0%

ofbugs: WSat iu 55,714 cases, and Crash iu 18 cases on which dSharp
even made the operating system crash, unfortunately. We investi
gated the reasons behind the OS crash and fouud that dSharp does
not place any limit on the amount of memory it uses. It exhausts all
of the memory resultiug iu a fatal crash. Lastly, for projMC, TestMC
fouud SegFault bug in 2 cases.

Specifically, when tested on BEGen, 3,996,254 cases of WCnt bug
and 48,344 cases of Crash bug were found in Ganak; 48,224 cases
of WSat bug were found in dSharp; and no bugs were found for
ApproxMC and projMC. When tested on FuzzGen; 8,269 cases of
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Crash bug were fouud iu Ganak; 7,490 cases of WSat bug were fouud
iu dSharp; and similar to BEGen no bugs were fouud iu ApproxMC
and projMC. When tested on SDPGen, 77 cases of WCnt bug were
found and 4 cases of Crash bug were found in Ganak; 18 cases of
Crash bug were found in dSharp; and 2 cases of SegFault bug were
found in projMC; and no bugs were found for ApproxMC. Note
that, FuzzGen cannot detect WCnt bugs in Ganak while BEGen
can. This may be due to the fact that random fuzzers generate CNF
formulas by consideriug all variables as primary variables and hence
may not be effective for testing bugs in projected model counting.
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if (literals.size() == 1) {
assert(!isUnitClause(literals[0J.neg()));
unit_clauses_.push_back(literals[0J);
return 0; }

(a) Location of Crash bug in Ganak

else if(strcmp(argv[iJ, "-p")==0)
theSolver.config().perform_projectedmodelcounting

= false;

(c) Location of WCnt bug in Ganak

ASE '20, September 21-25, 2020, Virtual Event, Australia

if (literals.size() == 1) {
addBinaryClause(literals[0J, literals[0J);
return 0; }

(b) Fix for Crash bug for Ganak

else if(strcmp(argv[iJ, "-p")==0)
theSolver.config().perform_projectedmodelcounting

= true;

(d) Fix for WCnt bug for Ganak

Figure 3: Fault localization and bug fixes for Ganak

Whereas our bounded exhaustive generator is able to generate all
possible combiuations of primary variables and thus could be highly
effective iu findiug bugs iu projected model countiug, regardless of
the small scales of the generated formulas. To summarize, we can
conclude that TestMC differential testing module is highly effective
in finding and categorizing bugs/failures in model counters.
RQ2: How Effective are the TestMC Metamorphic Testing
Relations in Finding Bugs/Failures in Model Counters?
UnsatisfYing metamorphic relations indicate the existence of bugs
whereas satisfyiug metamorphic relations help to narrow down the
list of potential bugs. Table 3 shows the results of metamorphic
testiug on Ganak and dSharp. TestMC only found SegFault bugs iu
projMC so metamorphic testing is not applicable for projMC. For
Ganak, SCI andMR2 proved to be most useful followed by MRl. SCI
was able to find 72.63% offormulas on which TestMC found (duriug
differential testiug) WCnt bug for Ganak. MRI was able to find 0.41%
and MR2 was able to find 49.37% of such formulas. However, MR3
and MR4 were not able to find any bug. SCI points out problems
w.r.t projected model countiug. We can observe that Ganak violated
SCI 2902438 times. Similarly, MR2 helps to poiut out that Ganak is
giving larger than expected counts. Code inspection revealed that
Ganak is ignoring the primary variables, thereby increasing the
state space of the solutions. MR3 is helpful in finding bugs related
to repeated literals in a clause and MR4 is good at detecting bugs
related to tautological clauses. The reason why MR3 and MR4 failed
to find any bugs is because the model counters under test do not
have such bug types. However, the usefulness of MR3 and MR4
should not be overlooked.

For dSharp, MR2 proved to be useful siuce it was able to identify
24.60% of formulas on which TestMC found (during differential
testing) WSat bug for dSharp. Although no other metamorphic
relations were violated by dSharp, these relations were still helpful.
For example, haviug 0 as a count for SCI shows that TestMC did not
find any bugs related to projected model counting in dsharp. This
matches our observation iu RQl. There were a total of 15 formulas
on which one or more model counters timed-out and MR relations
were able to confirm faults in 3 (20 %) of these formulas. Note that
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most metamorphic relations requires 1 additional iuvocation of the
model counter (for each formula) which is costly. Siuce our subject
model counters iuclude approximate (ApproxMC) and probabilistic
exact (Ganak) counters, there can be false positives using meta
morphic and differential testing. Therefore, metamorphic testing
is applied only in cases where a discrepancy is detected using dif
ferential testiug. Overall, the metamorphic relations served useful in
finding bugs in model counters.
RQ3: How Effective is Test Input Minimization with Delta
Debugging?
On average, TestMC was able to remove 30% of the clauses. For
each of the files on which model counter crashes, TestMC gave
a pair of two CNF files (C, D) where C and D include subsets of
clauses in the original file such that C does not cause a failure, D
does cause a failure, and D includes all the clauses in C and one
more clause. We executed Ganak usiug C and D. We then observed
which lines were executed differently between the two files. This
helped us to piupoiut the exact location of the Crash bug iu Ganak.
This shows that test input minimization helps the developers to
localize the bugs in model counters and makes it easy to fix them.
We concluded that input minimization with delta debugging is a very
helpful technique in debugging model counters.

5.3 Discussion
Fault localization and bug fixes for model counters. As ex
plained earlier, the source code ofprojMC was not available and
developers of dSharp considered bugs as lack offunctionality. There
fore, we could not perform fault localization on these two model
counters. However, we were successfully able to locate and fix bugs
in Ganak. Figure 3a and 3b show location and fix for Crash bug in
Ganak respectively. Ganak checks for UNSAT formulas by assert
ing that two unit clauses should not contain negation of the same
literal. However, the assertion terminates Ganak before returning
the expected 0 value. Figure 3c and 3d show location and fix for
one of the reasons behind WCnt bug in Ganak. Ganak checks if
a user specified -p in command for projected model counting. It
uses strcmp function (returns 0 for matched strings and non-zero
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otherwise) to compare the command with a predefined set of op
tions. Ganak mistakenly turns projected model counting off by
setting it to false instead of true due to which Ganak had problems
in projected model counting.
Number of unique bugs found in model counters. Table 2 and
Table 3 showed the number of formulas for which the model coun
ters produced incorrect results. It is also important to know the
number of unique bugs found in the model counters. For Ganak,
TestMC found WCnt bug and Crash bug. All instances of Crash bug
in Ganak were assertion errors (at the same location of the code)
and all instances of WCnt bug were related to incorrect parsing
of projected model counting formulas. In sum, we can say that
TestMC found 2 unique bugs in Ganak. For dSharp, TestMC found
two types of bugs i.e., Crash and WSat bug. For all 18 formulas for
which TestMC reported Crash bug in dSharp, we experienced fatal
OS crashes because dSharp consumed too much memory. The devel
opers of dSharp recommended to use the tool inside containers with
limited maximal memory usage. For the case of WSat bug, the au
thors confirmed that they expect the model counter to be deployed
for only satisfiable formulas; and a SAT solver is responsible for
checking unsatisfiable formulas. Since, the developers considered
WSat and Crash bugs as lack of functionalities, we count them as
two unique bugs. TestMC reported 2 instances of SegFault bug in
projMC. Unfortunately, we were unable to get the access to source
code which failed us to study the number of unique bugs in projMC.
For ApproxMC, TestMC did not report any types of bugs.
Bug reports. Since Ganak is publicly available at GitHub, we
used GitHub to submit bug report (two types of bugs i.e, Crash
and WCnt) to Ganak developers. The bug report is available at
https://github.com/meelgroup/ganak/issues/l. The developers have
accepted the presence ofbugs and made fixes to their tool. The fixed
version of their tool is now available at Ganak's GitHub repository.
For dSharp, we reported two bugs (WSat and Crash) to the authors
via email. They considered the bugs as lack offunctionalities and no
fixes have been made so far. Since there is no public repository of
projMC for us to report bugs (and the source-code is not available),
we emailed the authors of projMC to report SegFault bug. We sub
mitted the bug report together with two CNF formulas on which
projMC crashed. The authors of projMC accepted the presence of
a bug and promptly provided us with the fixed binary executable
version of their tool.
Threats to Validity. Our focus in this paper was on testing the
model counters in their standard configuration where they are
most commonly deployed. More comprehensive testing can con
sider adjusting their configurations, e.g., initialization seed and
confidence level, as well as the probabilistic nature of Ganak and
ApproxMC, which may reveal more bugs. Our test generator con
trolled the number offormulas generated by breaking symmetries,
e.g., by ignoring differences in the order clauses appear in a formula.
While such symmetry breaking is necessary for making bounded
exhaustive testing feasible, they may prevent the generation of an
input formula that would have exposed a bug. We set a timeout of
5000 seconds which is common in the field of model counting. For
the automatically generated small CNF formulas, the timeout did
not matter since those inputs represented problems with low com
plexity, which were easily solved by all four model counters. For the
larger CNF formulas that were derived from software designs, there
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were only 15 cases in which one or more model counters timed
out. It is possible that more bugs are found if the model counters
are kept running for a longer time, or if more diverse formulas are
used.

6 LESSONS LEARNED
We learned several valuable lessons including the types of bugs
found in model counters, reasons causing these bugs, what bugs
are considered worth fixing by the tool authors, and factors that
users ofmodel counters may want to consider.

Lesson 1: The definition of a fault can be surprisingly am
biguous. We learned to our surprise that for some model counters,
such as dSharp, it is acceptable for the tool developers if the tool
incorrectly returns a positive model count, e.g., 1, when the input
formula is unsatisfiable, i.e., has 0 solutions. The reasoning behind
this contradictory situation is that the developers (in this case) ex
pect the model counter to be deployed for only satisfiable formulas,
and a propositional satisfiability (SAT) solver to be deployed for
unsatisfiable formulas. While this expectation can be upheld in tool
competitions where two different categories of formulas (sat and
unsat) can be defined a prioiri, unfortunately, this expectation can
make the deployment of such model counters costly in software
analysis because to use such a model counter one must also run
a SAT solver to ensure that the model counter's precondition of
satisfiability of the input formula is met, thereby paying the cost of
SAT solving and model counting.

Lesson 2: Small input formulas are extremely useful in test
ing and fault localization. While the benefits ofbounded-exhaustive
testing are well-documented, unfortunately its application remains
quite limited. Our study shows how automatically generated small
inputs are effective at revealing faults in state-of-the-art model
counters. Despite the simplicity of generating such inputs, tool
developers overlook their usefulness. Moreover, small inputs are
extremely valuable in fault localization. For example, we were able
to locate the WCnt bug in Ganak using small formulas generated
using our TestMC bounded exhaustive generator, and we located
the Crash bug in Ganak using test input minimization with delta
debugging.

Lesson 3: Developers can overlook simple bugs in their code.
Even though modern model counters employ sophisticated algo
rithms that have been rigorously validated on paper, their tool
embodiments can fail for fairly simple reasons. Perhaps it is natural
for developers to focus on the more complex parts of the system
and meticulously engineer those parts while putting less focus on
the other parts, which then become a source of the system failure.
For example, for Ganak, we found that the model counting algo
rithm was not broken but in fact the code to parse command line
arguments was buggy. Moreover, the tool did not handle assertion
errors properly.

Lesson 4: It is difficult to help debug proprietary (closed 
source) software. While our reported bug reports were promptly
addressed by the authors of projMC, unfortunately we were not
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able to get access to the source code to directly help with debugging
the faults. This also prevented us to study the unique bugs in pro
[jM]:. In such a situation we belie'demaflri:npltts have a particularly
valuable role to play since they exhibit minimal execution paths
that show passing and failing executions.

Lesson 5: Model counters can exhibit silent failures. Like other
systems, there can be multiple types of bugs in model counters, in
cluding silent failures where the tool reports a result that is invalid.
We found two bug types in Ganak, namely the WCnt bug and the
Crash bug, and two bug types in dSharp, namely the WSat bug and
the Crash bug.

Lesson 6: Some model counters can consume up all system
memory. On some executions of dSharp, we experienced fatal OS
crashes because it consumed all system memory. For users of model
counters, it is best to run them inside containers with limited maxi
mal memory usage. This is particularly important when the model
counter is one of the backend tools employed in a software analysis.

Lesson 7: Public version of the tool may remain faulty well
after the bugs have been fixed internally. While the authors
of projMC promptly provided us fixed versions of the tool based
on the bug reports we submitted, the public version of projMC
remains faulty (at the time of submission of this paper, which is
over 6 months after we first reported the faults). There can be
various reasons for the delay in pushing the updates to the public
version. It is therefore important for the tool users to explicitly
check with the tool authors if they have an internal version that
has improvements that have not yet been made public.

7 RELATED WORK
This paper reports, to the best of our knowledge, the first work on
applying automated testing techniques to find bugs in propositional
model counters. The related work spawns many software testing
areas, including differential testing, metamorphic testing, and test
input generation for different kinds of systems [25, 28, 29, 33, 35,
46, 53, 60]. This section focuses on the most closely related work
on bug finding for constraint solvers.

In the context of SAT solvers, the most closely related previous
work is by Brummayer et aL [17] who introduced novel fuzzing
techniques for SAT and quantified boolean formula (QBF) solvers.
They implemented three fuzzers namely CNFFuzz for CNF formula
generation, FuzzSAT for 3-SAT formula generation, and QBFuzz for
quantified boolean formula generation, and used delta debugging
for minimizing failure-inducing CNF inputs. The key differences
between their work and this paper are: TestMC automates the
testing ofmodel counters, which are a generalization ofSAT solvers,
and require different test oracles, which TestMC's differential and
metamorphic testing modules introduce; and moreover, TestMC
introduces a bounded-exhaustive generator for CNF formulas with
primary variables, which to our knowledge, is the first such tooL

Several projects have focused on fuzzing and metamorphic test
ing of SMT solvers [13] and constraint propagation solvers. Brum
mayer et aL [15] proposed grammar-based black-box fuzz testing
for randomly generating bit-vector SMT formulas, combined with
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hierarchical delta-debugging using the knowledge offormula struc
tures and types. Similar approaches are available for answer set
solver
tool which performs SMT problem instance transformation and
generation for string constraint solvers. Akgun et. al [3] proposed
metamorphic testing for a constraint propagation solver called Min
ion [27] by checking the correctness and propagation level of a
new propagation algorithm for a constraint by comparing it with
a previously existing algorithm. Testing of the Gecode solver [51]
has evolved similarly to Minion's. Several other works deal with
the generation of random formulas [21,38,42], but focusing on
theoretical properties of formulas and not on their suitability for
supporting the solver debugging or testing.

Model-based testing [54], a common method in many domains [19]
was also used for testing solvers by Artho et. al [4]. They used it to
test sequences of application programming interface (API) calls and
different system configurations for the SAT solver Lingeling [10].
Subsequently, a model-based API testing framework for the SMT
solver Boolector [40] was proposed [41]. Furthermore, Modbat [5, 6],
a model-based API testing tool that provides an embedded domain
specific language (DSL) for specifying the model, was used for
testing the SAT solver PicoSAT[11].

We believe our bounded-exhaustive CNF generator and the cor
pus of CNF test inputs provide a useful resource for testing SAT
solvers and other model counters. Moreover, our metamorphic re
lations admit a straightforward specialization for SAT solvers. We
plan to leverage TestMC to test a broader class of CNF-based solvers
and analysis tools.

8 CONCLUSION
This experience paper presented an empirical study on testing
industrial strength model counters by applying the principles of
differential and metamorphic testing together with bounded ex
haustive input generation and input minimization. These principles
were embodied in the TestMC framework, and applied to test four
model counters, including three state-of-the-art model counters
from three different categories: exact model counting, probabilistic
exact model counting, and probabilistic approximate model count
ing. As test inputs, three complementary suites of CNF formulas
were used. One suite consisted of significantly larger formulas that
are derived from a wide range of real-world software design prob
lems. The second suite consisted of a bounded exhaustive set of
small formulas that TestMC generated. The third suite consisted of
CNF formulas generated using an off-the-shelf CNF fuzzer. TestMC
found bugs in three of the four subject model counters. The bugs
led to crashes, segmentation faults, incorrect model counts, and
resource exhaustion by the solvers. Faults in two of the three model
counters were fixed by their authors based on the bugs found by
TestMC.
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