Incremental Analysis of Evolving Alloy Models

Wenxi Wang!, Kaiyuan Wang?, Milos Gligoric!, Sarfraz Khurshid!

! The University of Texas at Austin
{wenxiw, gligoric, khurshid}@utexas.edu
2 Google Inc.
kaiyuanw@google.com

Abstract. Alloy is a well-known tool-set for building and analyzing soft-
ware designs and models. Alloy’s key strengths are its intuitive notation
based on relational logic, and its powerful analysis engine backed by
propositional satisfiability (SAT) solvers to help users find subtle design
flaws. However, scaling the analysis to the designs of real-world sys-
tems remains an important technical challenge. This paper introduces
a new approach, iAlloy, for more efficient analysis of Alloy models. Our
key insight is that users often make small and frequent changes and
repeatedly run the analyzer when developing Alloy models, and the de-
velopment cost can be reduced with the incremental analysis over these
changes. iAlloy is based on two techniques — a static technique based on
a lightweight impact analysis and a dynamic technique based on solution
re-use — which in many cases helps avoid potential costly SAT solving.
Experimental results show that iAlloy significantly outperforms Alloy
analyzer in the analysis of evolving Alloy models with more than 50%
reduction in SAT solver calls on average, and up to 7x speedup.

1 Introduction

Building software models and analyzing them play an important role in the
development of more reliable systems. However, as the complexity of the modeled
systems increases, both the cost of creating the models and the complexity of
analyzing these models become high [24].

Our focus in this paper is to reduce the cost of analyzing models written in
Alloy [5] — a relational, first-order logic with transitive closure. The Alloy an-
alyzer provides automatic analysis of Alloy models. To analyze the model, the
user writes Alloy paragraphs (e.g., signatures, predicates, functions, facts and as-
sertions), and the analyzer executes the commands that define constraint solving
problems. The analyzer translates the commands and related Alloy paragraphs
into propositional satisfiability (SAT) formulas and then solves them using off-
the-shelf SAT solvers. We focus on successive runs of the analyzer as the model
undergoes development and modifications. The key insight is that during model
development and validation phases, the user typically makes many changes that
are relatively small, which enables the incremental analysis to reduce the subse-
quent analysis cost [1].

We introduce a novel technique called iAlloy that incrementally computes
the analysis results. iAlloy introduces a two-fold optimization for Alloy ana-
lyzer. Firstly, iAlloy comes with a static technique that computes the impact of
a change on commands based on a lightweight dependency analysis, and selects
for execution a subset of commands that may be impacted. We call this tech-
nique regression command selection (RCS), since it shares the spirit of regression
test selection for imperative code [4] and adapts it to declarative models in Al-
loy. Secondly, iAlloy comes with a dynamic technique that uses memoization to
enable solution reuse (SR) by efficiently checking if an existing solution already
works for a command that must be executed. SR uses a partial-order based on
sets of parameters in predicate paragraphs to enable effective re-use of solutions
across different commands.

To evaluate iAlloy we conduct experiments using two sets of Alloy models
that have multiple versions. One set, termed mutant version set, uses simulated
evolving Alloy models where different versions are created using the MuAlloy [21,
27] tool for generating mutants with small syntactic modifications of the given
base Alloy models. This set includes 24 base Alloy models and 5 mutant versions
for each base model. The other set, termed real version set, uses base Alloy
models that had real faults and were repaired using the ARepair [25,26] tool
for fixing faulty Alloy models. For each faulty base model, its evolution is the
corresponding fixed model. This set includes 36 base Alloy models and 2 versions
for each model.

The experimental results show that iAlloy is effective at reducing the overall
analysis cost for both sets of subject models. Overall, iAlloy provides more than
50% command execution reduction on average, and up to 7x speed up. In addi-
tion, SR performs surprisingly well in the real version set with 58.3% reduction
of the selected commands, which indicates that our approach is promising for
incrementally analyzing real-world evolving Alloy models.

This paper makes the following contributions:

— Approach. We introduce a novel approach, iAlloy, based on static analysis
(regression command selection) and dynamic analysis (solution re-use) for
incrementally analyzing evolving Alloy models, and embody the approach as
a prototype tool on top of the Alloy analyzer.

— Evaluation. We conduct an extensive experimental evaluation of our ap-
proach using two sets of subject Alloy models, one based on syntactic muta-
tion changes and the other based on fault fixing changes. The results show
that iAlloy performs well on both sets.

— Dataset. We publicly release our subject Alloy models and their versions
at the following URL: https://github.com/wenxiwang/iAlloy-dataset.
Given the lack of common availability of Alloy models with evolution history,
we believe that our dataset will be particularly useful for other researchers
who want to evaluate their incremental analysis techniques for Alloy.

While our focus in this paper is the Alloy modeling language and tool-set, we
believe our technique can generalize to optimize analysis for models in other
declarative languages, e.g., Z [17] and OCL [2].

2 Background

In this section, we first introduce Alloy [5] based on an example which we use
through the paper. Then, we describe MuAlloy [21,27] — a mutation testing
framework for Alloy, which we apply to create different versions of an Alloy
model to simulate model evolutions. Finally, we briefly describe regression test
selection (RTS) for imperative code. Although our regression command selection
(RCS) applies to declarative code, the two methods share similar ideas.

2.1 Alloy

Alloy [5] is a declarative language for lightweight modeling and software
analysis. The language is based on first-order logic with transitive closure. Alloy
comes with an analyzer which is able to perform a bounded exhaustive analysis.
The input of the Alloy analyzer is an Alloy model that describes the system prop-
erties. The analyzer translates the model into conjunctive normal form (CNF)
and invokes an off-the-shelf SAT solver to search for solutions, i.e., boolean in-
stances. The boolean instances are then mapped back to Alloy level instances
and displayed to the end user.

Figure 1 shows the Dijkstra Alloy model which illustrates how mutexes are
grabbed and released by processes, and how Dijkstra’s mutex ordering constraint
can prevent deadlocks. This model comes with the standard Alloy distribution
(version 4.2). An Alloy model consists of a set of relations (e.g., signatures, fields
and variables) and constraints (e.g., predicates, facts and assertions) which we
call paragraphs. A signature (sig) defines a set of atoms, and is the main data
type specified in Alloy. The running example defines 3 signatures (lines 3-6),
namely Process, Mutex and State.

Facts (fact) are formulas that take no arguments and define constraints that
must be satisfied by every instance that exists. The formulas can be further
structured using predicates (pred) and functions (fun) which are parameterized
formulas that can be invoked. Users can use Alloy’s built-in run command to
invoke a predicate and the Alloy analyzer either returns an instance if the pred-
icate is satisfiable or reports that the predicate is unsatisfiable. The IsStalled
predicate (lines 12-14) is invoked by the GrabMutex predicate (line 16) and the
run command (line 53). The parameters of the IsStalled predicate are s and p
with signature types State and Process, respectively. An assertion (assert) is
also a boolean formula that can be invoked by the built-in check command to
check if any counter example can refute the asserted formula. Assertions does
not take any parameter. The DijkstraPreventsDeadlocks assertion (lines 45-47)
is invoked by the check command (line 60) with a scope of up to 6 atoms for
each signature.

2.2 MuAlloy

MuAlloy [21,27] automatically generates mutants and filters out mutants that are
semantically equivalent to the original base model. Table 1 shows the mutation

. open util/ordering [State] as so
. open util/ordering [Mutex] as mo
sig Process {}
sig Mutex {}
sig State { holds, waits: Process -> Mutex }
pred Initial [s: State] {
no (s.holds + s.waits)
}
9. pred IsFree [s: State, m: Mutex] {
10. no m."(s.holds) // no process holds this mutex

W ~NoO O WN -

1. %

12. pred IsStalled [s: State, p: Process] {

13. some p.(s.waits)

14. }

15. pred GrabMutex [s: State, p: Process, m: Mutex, s’: State] {

16. !s.IsStalled[p] // a process can only act if it is not waiting for a mutex

17. m !in p.(s.holds) // can only grab a mutex that is not yet hold
18. all m’: p.(s.holds) | mo/1lt[m’,m] // mutexes must be grabbed in order
19. s.IsFree[m] => {

20. p.(s’.holds) = p.(s.holds) + m // if the mutex is free, the process now holds it
21. no p.(s’.waits) // the process is not stalled any more

22. } else {

23. p.(s’.holds) = p.(s.holds) // if the mutex is not free, the process still hold the same mutexes.
24. p.(s’.waits) = m // and wait on the new mutex.

25. %}

26. all otherProc: Process - p | { // other processes maintain the same state

27. otherProc. (s’.holds) = otherProc.(s.holds)

28. otherProc.(s’.waits) = otherProc.(s.waits)

29. }

30. }

31. pred ReleaseMutex [s: State, p: Process, m: Mutex, s’: State] {

32. !'s.IsStalled[p]

33. .

34. }

35. pred GrabOrRelease {
36. Initial[so/first] &&

37. (all pre: State - so/last | let post = so/next[pre]l | // for every pre and post state
38. (post.holds = pre.holds && post.waits = pre.waits) || // either nothing happens

39. (some p: Process, m: Mutex | pre.GrabMutex [p, m, postl]) || // or a process grabs a mutex
40. (some p: Process, m: Mutex | pre.ReleaseMutex [p, m, postl)) // or releases a mutex

41. ¥

42. pred Deadlock {

43. e

44. }

45. assert DijkstraPreventsDeadlocks {
46. GrabOrRelease => ! Deadlock

47. ¥

48. pred ShowDijkstra {

49. GrabOrRelease && Deadlock

50. some waits

51. }

52. run Initial for 10

53. run IsStalled for 10

54. run IsFree for 10

55. run GrabMutex for 30

56. run ReleaseMutex for 35

57. run GrabOrRelease for 16

58. run Deadlock for 50 expect 1

59. run ShowDijkstra for 5 expect 1
60. check DijkstraPreventsDeadlocks for 6 expect O

Fig. 1: Dijkstra Alloy model from standard Alloy distribution (version 4.2); the
line written in red was absent from the faulty version

Table 1: Mutation Operators Supported in MuAlloy

Mutation Operator Description
MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR Formula List Operator Replacement
UOI Unary Operator Insertion
UOD Unary Operator Deletion
LOD Logical Operand Deletion
PBD Paragraph Body Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange

operators supported in MuAlloy. MOR mutates signature multiplicity, e.g., lone
sig to one sig. QOR mutates quantifiers, e.g., all to some. UOR, BOR and
LOR define operator replacement for unary, binary and formula list operators,
respectively. For example, UOR mutates a.xb to a.”b; BOR mutates a=>b to
a<=>b; and LOR mutates a&&b to al|b. UOI inserts an unary operator before
expressions, e.g., a.b to a.~b. UOD deletes an unary operator, e.g., a.* ~b to
a.xb. LOD deletes an operand of a logical operator, e.g., al |b to b. PBD deletes
the body of an Alloy paragraph. BOE exchanges operands for a binary operator,
e.g., a=>b to b=>a. I[EOF exchanges the operands of imply-else operation, e.g.,
a => b else c to a => c else b.

2.3 Regression Test Selection for Imperative Code

Regression test selection (RTS) techniques select a subset of test cases from an
initial test suite. The subset of tests checks if the affected sources of a project
continue to work correctly. RTS is safe if it guarantees that the subset of selected
tests includes all tests whose behavior may be affected by the changes [4, 32].
RTS is precise if tests that are not affected are also not selected. Typical RTS
techniques has three phases: the analysis phase selects tests to run, the execution
phase runs the selected tests, and the collection phase collects information from
the current version for future analysis. RTS techniques can perform at different
granularities. For example, FaultTracer [35] analyzes dependencies at the method
level while Ekstazi [3] does it at the file level, and both tools target projects
written in Java.

During the analysis phase, RTS tools commonly compute a checksum, i.e.,
a unique identifier, of each code entity (e.g., method or file) on which a test
depends. If the checksum changes, we view its source code as changed, in which
case the test is selected and executed; otherwise it is not selected. The execution
phase is tightly integrated with the analysis phase and simply executes selected
tests. During the collection phase, RTS either dynamically monitors the test

execution [3] or statically analyzes the test [7] to collect accessed/used entities,
which are saved for the analysis phase in the next run.

3 DMotivating Example

This section describes how iAlloy works using two versions of the Dijkstra Alloy
model. Line 18 (highlighted in red) in Figure 1 was absent in a faulty version of
the model which we denote as Version 1. The model in Figure 1 is the correct
version which we denote as Version 2.

First, we apply iAlloy to Version 1. iAlloy invokes commands Initial (line
52), IsStalled (line 53), IsFree (line 54) and GrabMutex (line 55) with the
SAT solver. Before invoking command ReleaseMutex (line 56), iAlloy finds that
the solution obtained from invoking GrabMutex can be reused as the solution
of ReleaseMutex. Therefore, command ReleaseMutex is solved without invoking
SAT. iAlloy continues to invoke the rest of the commands and finds that com-
mand Deadlock (line 58) can reuse the solution of IsStalled, and command
DijkstraPreventsDeadlocks can reuse the solution of ShowDijkstra. Next, we
apply iAlloy again to Version 2. iAlloy performs dependency analysis between
Version 1 and Version 2, and only selects the commands that are affected by
the change (Line 18 in Figure 1), namely commands GrabMutex, GrabOrRelease,
ShowDijkstra and DijkstraPreventsDeadlocks. iAlloy tries to reuse the solutions
of previous runs when invoking the four selected commands and GrabMutex reuses
the solution of command GrabMutex in Version 1.

Traditionally, Alloy analyzer needs to execute 18 commands with expensive
SAT solving, which takes total of 103.01 seconds. In comparison, iAlloy only
invokes 9 commands where 5 commands are saved by regression command se-
lection and 4 commands are saved by solution reuse. In total, iAlloy takes 84.14
seconds. Overall, iAlloy achieves 1.22x speed-up with 18.87 seconds time saving.
Section 5 evaluates more subjects and shows that iAlloy achieves 1.59x speed-up
on average and reduces unnecessary command invocations by more than 50%.

4 Techniques

In an evolving Alloy model scenario, we propose a two-step incremental analysis
to reduce the time overhead of command execution. The first step is regression
command selection (RCS) based on static dependency analysis (Section 4.1). The
second step is solution reuse (SR) using fast instance evaluation (Section 4.2).
Note that RCS handles paragraph-level dependency analysis, while SR covers
more sophisticated expression-level dependency analysis.

Algorithm 1 shows the general algorithm of our incremental analysis. For each
version (m,) in a sequence of model evolutions (ModelVersionSeq), iAlloy first
applies RCS (RCmdSelection) to select the commands (SelectCmdList) that
are affected since the last version. Then, for each command in SelectCmdList,
iAlloy further checks whether the solutions of previous commands can be reused
in the new commands (CheckReuse). Note that the solutions of commands in

Algorithm 1 General Algorithm for Incremental Alloy Model Solving

Input: model version sequence ModelV ersionSeq
Output: solution for each command

1:
2
3
4
5:
6:
7
8
9
10:

for m, € ModelVersionSeq do

SelectCmdList = RCmdSelection(m.,);
for ¢ € SelectCmdList do
if Changed(c.Dependency.SigList) then
Execute(c, SolutionSet);
else if !CheckReuse(c, SolutionSet) then
Execute(c, SolutionSet);
end if
end for

end for

Algorithm 2 Algorithm for Regression Command Selection

Input: one model version m,
Output: selected command list

1:
2
3
4:
5:
6.
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

procedure RCMDSELECTION(Model m.,)

List<Cmd> SelectCmdList;
Map<Cmd, Nodes> Cmd2DpdParagraphs = DpdAnalysis(m,.AllCmd);
for ¢ € m,.AllC'md do
DpdParagraphs = Cmd2DpdParagraphs.get(c);
if Exist(c.Dependency) then > old dependency
newDependency = CheckSum(DpdParagraphs);
if Changed(c.Dependency, newDependency) then
Update(c, new Dependency);
SelectCmdList.add(c); > update dependency and select commands
end if
else
dependency = CheckSum(DpdParagraphs)
Update(c, dependency);
SelectCmdList.add(c); > update dependency and select commands
end if
end for
return SelectCmdList;

19: end procedure

the same version can also be reused. However, if the signatures change in the
current version, then SR is not applicable and all commands are executed. If
none of the old solutions can be reused for the current command ¢, then iAlloy
invokes the SAT solver (Exzecute) to find a new solution which may be used for
the next run.

4.1 Regression Command Selection (RCS)

Algorithm 2 presents the algorithm for RCS. iAlloy first gets the dependent
paragraphs of each command (Cmd2DpdParagraphs) based on the dependency

IsFree IsStalled

N

Initial GrabMutex ReleaseMutex IsStalled

& &

GrabOrRelease Deadlock @ ReleaseMutex

Fig. 2: Dependency graph for ShowDijkstra (left) and ReleaseMutex (right) com-
mand in the Dijkstra model

analysis (DpdAnalysis). For each command ¢ in model version m,,, iAlloy gen-
erates a unique identifier, as described in Section 2.3, for each dependent para-
graph (CheckSum). If the checksum of any dependent paragraph changes, iAl-
loy selects the corresponding command as the command execution candidate
(SelectCmdList) and updates the dependency with new checksum.

The dependency information of each command is the key for RCS. The de-
pendency analysis for Alloy models can be either at the paragraph level or at
the expression level. For safety reasons as we mentioned in Section 2.3, we do
dependency analysis on the paragraph level in RCS. And we address further fine-
grained expression level analysis in SR to achieve a better precision. To filter out
the changes in comments and spaces, we traverse the AST of each paragraph
and output the canonicalized string of the paragraph. The canonicalized string
is hashed into a checksum which represents the unique version of the paragraph.

We take the Dijkstra Alloy model in Figure 1 as an example. The dependency
graph of command ShowDijkstra is shown in Figure 2 (left), including tran-
sitively dependent Alloy paragraphs and their corresponding checksums CS_i.
Since the checksum €S_4 of predicate GrabMutex is changed (line 18 in Figure 1)
and GrabMutex is in the dependency graph of command ShowDijkstra, command
ShowDijkstra is selected. In comparison, the dependency graph of command
ReleaseMutex is shown in Figure 2 (right). Since the checksums of both IsStalled
and ReleaseMutex do not change, command ReleaseMutex is not selected.

4.2 Solution Reuse (SR)

Algorithm 3 illustrates how iAlloy checks if a solution can be reused by the
current command. The input to algorithm 3 is each selected command (c) from
RCS and a solution set containing all the previous solutions (SolutionSet). If the

Algorithm 3 Algorithm for Solution Reuse Checking

Input: one command and the solution set
Output: if the command can reuse any solution in the solution set

1: procedure CHECKREUSE(Cmd ¢, Set<Solution> SolutionSet)

2 List<Nodes> CheckList;

3 CheckList.add(c. Dependency.FactList);

4: if CheckCmd(c) then > ¢ is check command
5: CheckList.add(c. Dependency.Assert);

6: else > ¢ is run command
7 CheckList.add(c. Dependency.Pred);

8: end if

9: for s € SolutionSet do
10: if c.param C s.cmd.param && s.sol.evaluator(CheckList) = true then
11: return true;
12: end if
13: end for
14: return false;

15: end procedure

solution s from SolutionSet includes valuations of parameters of the Alloy para-
graph (represented as CheckList which includes implicit Alloy facts) invoked
by ¢ (Section 4.2.1), and CheckList is satisfiable under s (Section 4.2.2), then
s can be reused as the Alloy instance if ¢ is invoked and ¢ need not be invoked
with expensive SAT solving (return true). Otherwise, SAT solving is involved
to generate a new solution (if there is any) which is stored for subsequent runs
(Algorithm 4, Section 4.2.3).

Note that SR not only filters out the semantically equivalent regression
changes, but also covers the sophisticated expression-level dependency analysis.
For example, suppose the only change in an Alloy model is a boolean expres-
sion changed from A to A || B where || stands for disjunction and B is another
boolean expression, the old solution of the corresponding command is still valid
and can be reused. Besides, SR allows solutions from other commands to be
reused for the current command, which further reduces SAT solving overhead.

4.2.1 Solution Reuse Condition As described in Section 2, each command
invokes either a predicate or an assert. Each predicate has multiple parameter
types which we denote as parameter set for simplicity in the rest of the paper.
The parameter set of any assertion is an empty set (&). As shown in the following
equation, we define the parameter set of a command ¢ (c.param) as the parameter
set of the directly invoked predicate (ParamSet(c.pred)) or assertion (&).

ParamSet(c.pred), c is run command
c.param = .
a, ¢ is check command
A command that invokes an Alloy paragraph with parameters implicitly
checks if there exists a set of valuations of the corresponding parameters that

T f GrabMutex
a\\{\St\ate, Mutex, Proecess, State} > ReleaseMutex

///7 \ ‘
o

= .- -
IsFree} (\{State, Mutex } { state, Process] 'JUSSta”ed
TTT—_ I
—

o
({state}) {Initial
T
—— | Deadlock
(\\{ }/) DijkstraPreventsDeadlocks
ShowDijkstra

Fig. 3: Parameter relations of commands in the Dijkstra model

Algorithm 4 Algorithm for Command Execution

Input: one command and the solution set
Output: save the solution if it is SAT or print out UNSAT

1: procedure CMDEXECUTE(Cmd ¢, Set<Solution> SolutionSet)

2: Ad4Solution sol = Alloy.solve(c);

if sol.IsSat() then > if the solution is SAT;
Solution s;
s.sol = sol; > store the instance and corresponding command;

s.cmd = ¢
SolutionSet.add(s);
else
print UNSAT
10: end if
11: end procedure

satisfies the paragraph. We observe that command co can reuse the solution s;
obtained by invoking c¢; if the parameter set of cs is a subset of that of ¢;, namely
co.param C cq.param. The solution reuse complies to a partial order based on
the subset relation of command parameters. On the other hand, solution s; can-
not be reused by ¢z if co.param C c¢j.param, in which case we do not know all
the valuations of cy’s parameters.

Figure 3 shows how solution reuse is conducted based on the subset relations
of command parameter set in the Dijkstra model. For instance, since the param-
eter set {} (&) is the subset of all parameter sets above it, the corresponding
commands Deadlock, DijkstraPreventsDeadlocks and ShowDijkstra with param-
eter set {} can reuse all solutions of commands whose parameter sets are the
super set of {}, namely Initial, IsFree, IsStalled, GrabMutex and ReleaseMutex.
Since any parameter set is a subset of itself, a solution s1 of command ¢; can be
reused by the command co which has the same parameter set as c;.

4.2.2 Solution Reuse Evaluation Once a solution s can be reused for com-
mand ¢, we need to further check if s is actually the solution of ¢ that satisfies
the corresponding constraints. As described in Section 2, the constraints of a

47 .
37 |
27 |
L0 HHD HEHLHE HH]
\\\\\\\\\\\\\\\\\\\\\\I\:I\
S S S SRS RS SES IR SS ST S
T ST § & 5 5 SLEFTLRILX LI ITITES.0 o
3 Q) R & S g 05T ~N & g ke
% T 0 O TAST Y5 5 59 g 5 S
§ 75 % ¥ES FgFIF G
< s .8 & & & @ 3 R
g T 3 < &
< & g

Fig.4: Speedup results on Mutant Version Set

command come from all facts and the transitively invoked predicate/assertion.
To reuse s in the old version, s must be satisfiable for ¢ in the new version. If
c is unsatisfiable under the valuations of s, it does not imply that c¢ is unsatis-
fiable in the solution space and thus ¢ must be invoked with SAT solving. The
satisfiability of command c is determined by the Alloy built-in evaluator under
the valuation of s.

4.2.3 Command Execution If none of the solutions can be reused by com-
mand c, iAlloy executes the command as described in Algorithm 4. If a solution
sol is found (Sol.IsSat()), the solution sol together with the command c is saved
for subsequent runs. To avoid saving too many solutions as the model evolves
(which may slow down the SR and reduce the overall gain), we only keep the
most recent solution for each command. In future work, we plan to evaluate how
long a solution should be kept.

5 Experimental Evaluation

In this paper, we answer the following research questions to evaluate iAlloy:

— RQ1: How does iAlloy perform compared to traditional Alloy Analyzer (which
we treat as the baseline)?

— RQ2: How much reduction of the commands executed does Regression Com-
mand Selection and Solution Reuse contribute in the two subject sets?

— RQ3: What is the time overhead of Regression Command Selection, Solution
Reuse and command execution in iAlloy, respectively?

7.0 |- |
3.0/ i =
2.0 - N
1.8 - n
1.6 H M -
1.4 H [-
1.2 H -
°l H " H n
0 8 r—r-r—rrr—r-r-r—rrr—r—r-r—r—r—1—1—1-1-1T-"17T-1T"1T-"1T"17T"7T"T7T"T"1T"1T"T"1T"T"T"1T"1
AN VNN A N AN DDA A DNV 0 ON DD N5 W OA 0D
Vo3 QORI 3d & LT NGO DO D DD O DT T DO DY
SERNCEESEE SOSTEIITSSISTSTSSTETELT
N FEER & I S N N SR QNSRS S S S g
& §$$Q§ & gggz@ PSS S
N S
FFF s s

Fig. 5: Speedup results on Real Version Model Set

5.1 Experimental Setup

Subjects: There are two subject sets in the experiment. The first set of subjects
is the simulated evolving Alloy model version sets, which we call Mutant Version
Set. In this set, we take 24 Alloy models from the standard Alloy distribution
(version 4.2) and use them as the first version. For each model in version 1, we
use MuAlloy [27] to generate several mutants and randomly select one as version
2. This process continues until we get the fifth version. Thus, each subject in
the Mutant Version Set includes five versions. The second subject set is called
Real Version Set. Each subject in this set consists of two model versions: the
real faulty model (version 1) from the ARepair [26] distribution and the correct
model after the fix (version 2). There are 36 subjects in this set.

Baseline: The baseline in this experiment is the traditional Alloy Analyzer,
which executes each command for each version.

Platform: We conduct all our experiments on Ubuntu Linux 16.04, an Intel
Core-i7 6700 CPU (3.40 GHz) and 16GB RAM. The version of Alloy we did

experiments on is version 4.2.

Table 2: RCS, SR and Command Execution Results in Mutant Version Set

Model cmd |select reuse execute |T_select (%)|T reuse (%)|T_execute (%)
addr 5 |5 (100%) |0 (0%) 5 (100%) |42 0.0 95.8
addressBook |10 |9 (90%) 3 (33.3%) (6 (66.7%) [0.3 53.5 46.2
arr 5 |5 (100%) |2 (40%) |3 (60%) |3.6 1.9 915
balancedBST|20 |16 (80%) |13 (81.3%) |3 (18.7%) |12.3 237 61.0
bempl 10 |10 (100%) |4 (40%) |6 (60%) |14 13 96.8
binaryTree |5 5 (100%) 3 (60%) 2 (40%) 1.7 0.9 97.4
od 20 |13 (65%) |9 (69.2%) |4 (30.8%) |0.7 08 985
ceilings 30 18 (60%) |13 (72.2%) |5 (278%) |29 53 917
dijkstra 30 |23 (76.7%) |9 (39.1%) |14 (60.9%) |0.6 36.3 632
dil 20 |14 (70%) |9 (64.3%) |5 (35.7%) |11.4 113 73.9
farmer 15 |15 (100%) |3 (20%) |12 (30%) |0.3 1.6 98.1
filesystem |15 |11 (73.3%) |3 (27.3%) |8 (12.7%) |27.9 74 54.7
full Tree 15 13 (86.7%) |11 (34.6%) |2 (15.4%) |1.6 23 96.1
grade 10 |10 (100%) |0 (0%) 10 (100%) |1.2 0.9 97.9
grandpal |15 |15 (100%) |0 (0%) 15 (100%) |0.6 0.0 99.4
grandpa2 |10 7 (70%) |3 (42.9%) |4 (57.1%) |1.2 1.0 97.8
grandpa3 |25 |16 (64%) |6 (37.6%) |10 (62.5%) |0.3 05 99.2
handshake |20 |20 (100%) |0 (0%) 20 (100%) |05 0.0 995
life 15 |7 (46.7%) |1 (14.3%) |6 (85.7%) |0.9 22 96.9
lists 20 |20 (100%) |9 (46%) |11 (55%) |0.2 04 994
peterson |85 |69 (81.2%) |41 (59.4%) |28 (40.6%) |08 78 915
ringElection1|30 |30 (100%) |7 (23.3%) |23 (76.7%) 0.4 17 97.9
oIl 5 |5 (100%) |0 (0%) 5 (100%) [29.9 6.2 63.9
student 25 |23 (92%) |20 (87.0%) |3 (13.0%) [9.2 215 69.3
[Overall [460 [379 (82.4%)[169 (44.6%)[210 (55.4%)[4.7 [8.4 [86.8

5.2 RQ1: Speed-up Effectiveness

Figure 4 and Figure 5 show the speedup of iAlloy compared to the baseline
on Mutant Version Set and Real Version Set, respectively. The x-axis denotes
the subject names and the y-axis denotes the speed up. In Mutant Version Set,
iAlloy achieves speed-up for 19 subjects (75% of the subject set), with up to
4.5x speed-up and 1.79x on average. The reason iAlloy did not speed up on
the remaining 5 subjects is that either the change is in the signatures or many
commands are unsatisfiable under the previous solutions, where the analysis time
overhead in iAlloy (RCS and SR) is larger than the savings. In Real Version
Set, we observe that iAlloy achieves a speedup of up to 7.66x and 1.59x on
average over all subjects except one (97% of the subject set). iAlloy does not
save any time on arri because there exists a single command in the subject and
the command is unsatisfiable (in which case neither RCS nor SR can save any
command executions).

5.3 RQ2: Command Selection and Solution Reuse Effectiveness

Columns 2-5 in Table 2 and Table 3 show the total number of commands in each
subject (cmd), the number of the selected commands and their percentage com-
pared to the total number of commands (select), the number of solution reuse
and their percentage in selected commands (reuse), and the number of actually
executed commands and their percentage in selected commands (execute), for
the Mutant and Real Version Set respectively. We can see that, both RCS and

Table 3: RCS, SR and Command Execution Results in Real Version Set

Model|cmd |select reuse execute |T_select (%)|T _reuse (%)|T _execute (%)
addr |2 |2 (100%) |1 (50%) |1 (50%) |24.9 17 704
arrl |2 2 (100%) |0 (0%) 2 (100%) |74 0.0 92.6
a2 |2 |2 (100%) |1(50%) |1 (50%) |7.2 4 914
bBST1[8 |8 (100%) |6 (75%) |2 (25%) |13.4 15.2 714
bBST2 (S |8 (100%) |6 (75%) |2 (25%) |14.0 15.0 70.9
bBST3(S |8 (100%) |6 (5%) |2 (25%) |35 149 715
bempl |4 |4 (100%) |0 (0%) 1(100%) |18 0.4 978
cdl |8 |7 (87.5%) | (714%) |2 (28.6%) |11 0.9 97.9
cdZ |8 |7 (87.5%) |6 (35.7%) |1 (14.3%) |3.5 3.0 935
dijk |12 |10 (83.3%) |5 (50%) |5 (50%) |0.7 232 76.2
dill |8 |8 (100%) |6 (75%) |2 (25%) |13.2 16.0 70.8
dli2 |8 |8 (100%) |6 (15%) |2 (25%) |12.7 17.0 70.3
dll3 |8 |8 (100%) |7 (37.5%) |1 (12.5%) |16.3 223 61.3
dild |8 |8 (100%) |7 (37.6%) |1 (12.5%) |[17.6 223 60.1
farmer |7 |7 (100%) |2 (28.6%) |5 (71.4%)]0.7 2.5 96.8
grade |4 |4 (100%) |1 (25%) |3 (5%) |36 7 94.8
stud |10 |10 (100%) |7 (70%) |3 (30%) |81 11.0 30.9
stul |10 |10 (100%) |6 (60%) 4 (40%) 5.8 8.3 85.9
stul0 |10 |10 (100%) |5 (50%) |5 (50%) 6.7 10.1 83.2
stull |10 |10 (100%) |7 (70%) |3 (30%) |7.6 104 81.0
stul2 |10 |10 (100%) |7 (70%) |3 (30%) |7.6 92 83.2
stul3 |10 |10 (100%) |7 (70%) |3 (30%) |64 95 841
stuld |10 |10 (100%) |6 (60%) |4 (40%) |6.6 8.7 84.8
stuls |10 |10 (100%) |6 (60%) |4 (40%) |6.0 6.7 86.4
stul6 |10 |10 (100%) |4 (40%) |6 (60%) |94 133 774
stul7 |10 |10 (100%) |5 (50%) 5 (50%) 6.7 8.0 85.3
stul8 |10 |10 (100%) |4 (40%) |6 (60%) |7.7 105 SL.8
stul0 |10 |10 (100%) |4 (40%) |6 (60%) |61 93 841
stuz |10 |10 (100%) |4 (40%) |6 (60%) |6.2 86 85.2
stus |11 |11 (100%) |5 (45.5%) |6 (54.5%) |5.3 8.9 85.8
stud |10 |10 (100%) |4 (40%) |6 (60%) |7.1 96 333
stus |10 |10 (100%) |7 (70%) |3 (30%) |81 82 83.7
stub |10 |10 (100%) |6 (60%) |4 (40%) |7.0 9.1 34.0
stu7 |10 |10 (100%) |6 (60%) 4 (40%) 6.6 8.9 84.5
stus |10 |10 (100%) |7 (70%) |3 (30%) |6.7 74 85.9
stud |10 |10 (100%) |4 (40%) |6 (60%) |7.1 1.0 319
[Overall[306 [302 (98.7%)[176 (58.3%)[126 (41.7%)[8.1 [9.7 [82.2 |

SR help reduce command execution in both subject sets, but to different ex-
tent. A smaller portion of commands are selected in Mutant Set (82.4%) than in
Real Set (98.7%). This is due to the fact that there are more changes between
versions in Real Set than in Mutant Set. However, smaller portion (41.7% vs.
55.4%) of the selected commands are executed and a larger portion (58.3% vs.
44.6%) of selected commands successfully reuse solutions in Real Set, compar-

ing with Mutant Set. Besides, there are 54.3% command execution reduction

d— t
(w) in Mutant Set and 58.8% in Real Set. The result shows that

iAlloy is promising in reducing the command executions in analyzing real world
Alloy models as they evolve.

5.4 RQ3: Time Consumption

Columns 6-8 in tables 2 and 3 present the percentage of time consumption in
RCS (T_select), SR (T _reuse), and command execution (T execute) in the
Mutant Version Set and Real Version Set, respectively. We can see that in both
subject sets, execution takes most of the time while RCS and SR are lightweight.

6 Related Work

A lot of work has been done to improve [20,22,24] and extend [10-13,16,19,25,
28-31,33] Alloy. We discuss work that is closely related to iAlloy.
Incremental analysis for Alloy Li et al. [9] first proposed the incremental
analysis idea for their so-called consecutive Alloy models which are similar to the
evolving models. They exploit incremental SAT solving to solve only the delta
which is the set of boolean formulas describing the changed part between two
model versions. Solving only the delta would result in a much improved SAT
solving time than solving the new model version from scratch. Titanium [1] is
an incremental analysis tool for evolving Alloy models. It uses all the solutions
of the previous model version to potentially calculate tighter bounds for certain
relational variables in the new model version. By tightening the bounds, Tita-
nium reduces the search space, enabling SAT solver to find the new solutions at a
fraction of the original solving time. These two approaches are the most relevant
to our work that both focus on improving solving efficiency in the translated
formulas. Whereas our incremental approach is to avoid the SAT solving phase
completely, which is fundamentally different from existing approaches. In addi-
tion, Titanium has to find all the solutions in order to tighten the bounds, which
would be inefficient when only certain number of solutions are needed.

Regression symbolic execution Similar to the SAT solving applications such
as Alloy analyzer, symbolic execution tools also face the scalability problems, in
which case a lot of work has been done to improve the performance [6,14,23,34].
The most closely related to our work is regression symbolic execution [14,15,34].
Similar to our RCS, symbolic execution on the new version is guided through
the changed part with the previous versions. In addition, there is also work on
verification techniques that reuses or caches the results [8,18].

7 Conclusion & Future Work

In this paper, we proposed a novel incremental analysis technique with regression
command selection and solution reuse. We implemented our technique in a tool
called iAlloy. The experimental results show that iAlloy can speed up 90% of our
subjects. Furthermore, it performs surprisingly well in models of the real faulty
versions with up to 7.66 times speed up and above 50% command execution
reduction. This indicates that iAlloy is promising in reducing time overhead of
analyzing real-world Alloy models. In the future, we plan to extend iAlloy to
support changes that involve Alloy signatures and perform a more fine-grained
analysis to improve command selection.

Acknowledgments

We thank the anonymous reviewers for their valuable comments. This research
was partially supported by the US National Science Foundation under Grants
Nos. CCF-1566363, CCF-1652517, CCF-1704790 and CCF-1718903.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Hamid Bagheri and Sam Malek. Titanium: Efficient Analysis of Evolving Alloy
Specifications. In International Symposium on Foundations of Software Engineer-
ing, pages 27-38, 2016.

Rational Software Corporation. Object constraint language specification. Version
1.1, 1997.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical Regression Test Se-
lection with Dynamic File Dependencies. In International Symposium on Software
Testing and Analysis, pages 211-222, 2015.

Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. An Empirical Study of Regression Test Selection Techniques. Trans.
Softw. Eng. Methodol., 10(2):184-208, 2001.

. Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. Transactions

on Software Engineering and Methodology, pages 256—290, 2002.

Xiangyang Jia, Carlo Ghezzi, and Shi Ying. Enhancing Reuse of Constraint So-
lutions to Improve Symbolic Execution. In International Symposium on Software
Testing and Analysis, pages 177-187, 2015.

Owolabi Legunsen, August Shi, and Darko Marinov. STARTS: STAtic Regression
Test Selection. In Automated Software Engineering, pages 949-954, 2017.

K. Rustan M. Leino and Valentin Wiistholz. Fine-Grained Caching of Verification
Results. In Computer Aided Verification, pages 380-397, 2015.

Xijaoming Li, Daryl Shannon, Jabari Walker, Sarfraz Khurshid, and Darko Mari-
nov. Analyzing the Uses of a Software Modeling Tool. Electronic Notes in Theo-
retical Computer Science, 164(2):3 — 18, 2006.

Vajih Montaghami and Derek Rayside. Extending Alloy with Partial Instances. In
Abstract State Machines, Alloy, B, VDM, and Z, pages 122—-135, 2012.

Vajih Montaghami and Derek Rayside. Staged evaluation of partial instances in a
relational model finder. In Abstract State Machines, Alloy, B, TLA, VDM, and Z,
pages 318-323, 2014.

Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and Shriram Kr-
ishnamurthi. Aluminum: Principled Scenario Exploration Through Minimality. In
International Conference on Software Engineering, pages 232—241, 2013.

Jaideep Nijjar and Tevfik Bultan. Bounded Verification of Ruby on Rails Data
Models. In International Symposium on Software Testing and Analysis, pages 67—
77, 2011.

Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed In-
cremental Symbolic Execution. SIGPLAN Not., 46(6):504-515, 2011.

David A. Ramos and Dawson R. Engler. Practical, Low-Effort Equivalence Verifi-
cation of Real Code. In Computer Aided Verification, pages 669—685, 2011.
Germén Regis, César Cornejo, Simén Gutiérrez Brida, Mariano Politano, Fernando
Raverta, Pablo Ponzio, Nazareno Aguirre, Juan Pablo Galeotti, and Marcelo Frias.
DynAlloy Analyzer: A Tool for the Specification and Analysis of Alloy Models with
Dynamic Behaviour. In Foundations of Software Engineering, pages 969-973, 2017.
J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

Ofer Strichman and Benny Godlin. Regression Verification - A Practical Way to
Verify Programs, pages 496-501. 2008.

Allison Sullivan, Kaiyuan Wang, and Sarfraz Khurshid. AUnit: A Test Automation
Tool for Alloy. In International Conference on Software Testing, Verification, and
Validation, pages 398-403, 2018.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Allison Sullivan, Kaiyuan Wang, Sarfraz Khurshid, and Darko Marinov. Evaluating
State Modeling Techniques in Alloy. In Software Quality Analysis, Monitoring,
Improvement, and Applications, 2017.

Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid.
Automated Test Generation and Mutation Testing for Alloy. In International
Conference on Software Testing, Verification, and Validation, pages 264275, 2017.
Emina Torlak and Daniel Jackson. Kodkod: A Relational Model Finder. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 632—647, 2007.

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. Green: Reducing,
Reusing and Recycling Constraints in Program Analysis. In International Sympo-
sium on the Foundations of Software Engineering, pages 58:1-58:11, 2012.
Jianghao Wang, Hamid Bagheri, and Myra B. Cohen. An evolutionary approach for
analyzing Alloy specifications. In International Conference on Automated Software
Engineering, pages 820-825, 2018.

Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. ARepair: A Repair Frame-
work for Alloy. In International Conference on Software Engineering, 2018.
Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. Automated Model Repair
for Alloy. In Automated Software Engineering, pages 577-588, 2018.

Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. MuAlloy: A Mutation
Testing Framework for Alloy. In International Conference on Software Engineer-
ing, pages 29-32, 2018.

Kaiyuan Wang, Allison Sullivan, Manos Koukoutos, Darko Marinov, and Sarfraz
Khurshid. Systematic Generation of Non-Equivalent Expressions for Relational
Algebra. In Abstract State Machines, Alloy, B, TLA, VDM, and Z, pages 105—
120, 2018.

Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. ASketch:
A Sketching Framework for Alloy. In Symposium on the Foundations of Software
Engineering, pages 916-919, 2018.

Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. Fault
Localization for Declarative Models in Alloy. In eprint arXiv:1807.08707, 2018.
Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. Solver-
based Sketching Alloy Models using Test Valuations. In Abstract State Machines,
Alloy, B, TLA, VDM, and Z, pages 121-136, 2018.

Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim, Don Batory, and
Milos Gligoric. Towards Refactoring-Aware Regression Test Selection. pages 233—
244, 2018.

Wenxi Wang, Kaiyuan Wang, Mengshi Zhang, and Sarfraz Khurshid. Learning to
Optimize the Alloy Analyzer. In International Conference on Software Testing,
Verification and Validation, 2019. To appear.

Guowei Yang, Corina S. Pasareanu, and Sarfraz Khurshid. Memoized Symbolic
Execution. In International Symposium on Software Testing and Analysis, pages
144-154, 2012.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. Localizing Failure-Inducing
Program Edits based on Spectrum Information. In International Conference on
Software Maintenance and Evolution, pages 23-32, 2011.

