RFCScope: Detecting Logical Ambiguities
in Internet Protocol Specifications

Mrigank Pawagi Lize Shao
Indian Institute of Science
Bengaluru, India

mrigankp @iisc.ac.in zgr3et@virginia.edu

Abstract—Internet protocol specifications, published as Re-
quests for Comments (RFCs) by the IETF organization, are
essential to ensuring the interoperability, security, and reliability
of the Internet. However, ambiguities in these specifications,
particularly logical ambiguities such as inconsistencies and
under-specifications, can lead to critical misinterpretations and
implementation errors. Unfortunately, such ambiguities remain
largely overlooked and challenging to detect with existing tools.

In this paper, we present the first systematic study of verified
technical errata from Standards Track RFCs over the past 11
years, identifying seven distinct subtypes of logical ambiguities.
Building on these insights, we introduce RFCScope, the first
scalable framework for detecting logical ambiguities in RFCs.
RFCScope employs large language models (LLMs) through a
modular pipeline that constructs targeted cross-document context,
partitions specifications to preserve semantic integrity, applies bug-
type-aware prompts for detection, and filters out false positives
using structured reasoning validation.

RFCScope uncovers 31 new logical ambiguities spanning all
seven subtypes across 14 recent RFCs. Eight of these have
been confirmed by RFC authors, with three officially verified as
technical errata. Our results demonstrate that RFCScope offers
a practical solution for improving the clarity, consistency, and
reliability of protocol standards through ambiguity detection.

I. INTRODUCTION

Internet protocols are the foundation of global digital
communication, and their correctness is critical to ensuring in-
teroperability, security, and reliability across diverse networked
systems. The authoritative specifications for these protocols are
published as Requests for Comments (RFCs) by the Internet
Engineering Task Force (IETF) [1].

RFCs blend informal and formal elements, including natural
language explanations, structured formal notations, diagrams,
pseudocode, and tables, to clearly convey protocol specifica-
tions. Despite rigorous drafting, review, and iterative revision
processes, the human-authored origin of RFCs inevitably
introduces ambiguities that can undermine interoperability and
implementation correctness across the Internet.

While prior work [2], [3] has explored detecting linguistic
ambiguities in RFCs using manually written grammar rules, a
critical gap remains: the identification of logical ambiguities,
inconsistencies and under-specifications that span multiple sec-
tions, documents, or implicit assumptions. Logical ambiguities
are especially concerning, as they directly impact protocol
interpretation and implementation, yet remain largely under-
explored and difficult to detect using existing approaches [2],
(4], (50, (6], [71, (81, (90, (101, (111, [12].

Hyeonmin Lee
University of Virginia University of Virginia University of Virginia University of Virginia
Charlottesville, USA Charlottesville, USA Charlottesville, USA Charlottesville, USA
frvovh@virginia.edu

Yixin Sun Wenxi Wang

ys3kz@virginia.edu wenxiw @virginia.edu

To bridge this gap, we conduct the first systematic study of
verified technical errata reports from Standards Track RFCs
published over the past 11 years. Through manual analysis of
273 verified technical errata, we classify logical ambiguities
into seven fine-grained subtypes, organized under two major
categories (i.e., inconsistency and under-specification). Our
analysis also reveals that these ambiguities frequently arise
from multi-section dependencies, cross-document references,
implicit domain assumptions, and feedback from practical
implementations. This study lays a foundation for the design
of automated tools to detect logical ambiguities in RFCs.

Recent advances in large language models (LLMs) offer
promising new capabilities for automating specification analysis.
However, applying LLMs to detect logical ambiguities in
RFCs introduces several challenges: Challenge 1: RFCs are
often lengthy and exceed the input limits of modern LLMs;
Challenge 2: ambiguity detection requires context-aware
reasoning across multiple interrelated documents; Challenge 3:
LLMs often lack specialized domain knowledge about logical
ambiguities in Internet protocols; and Challenge 4: LLMs are
prone to hallucinating plausible but incorrect conclusions.

To address these challenges, we propose RFCScope, the
first framework designed to detect logical ambiguities in RFCs.
RFCScope introduces a scalable pipeline that combines four
automated components: a Context Constructor that selectively
extracts and synthesizes relevant context from both RFC
and non-RFC references (addressing Challenges 1 and 2);
a Partitioner that semantically segments the RFC and its
context into manageable units suitable for LLMs (addressing
Challenges 1 and 2); an Analyzer that detects ambiguities using
bug-type-aware prompts (addressing Challenges 3 and 4); and
an Evaluator that conservatively re-validates the Analyzer’s
reasoning to eliminate hallucinated or incorrect bug reports
(addressing Challenge 4). A final manual inspection step
further filters false positives to ensure correctness and practical
relevance.

We evaluate RFCScope on 20 recent RFCs. The results show
that RFCScope detects 31 new logical ambiguities across 14
RFCs, spanning all seven identified subtypes. So far, eight of
these ambiguities have been confirmed by the corresponding
RFC authors. Among them, three have been submitted to the
IETF errata portal [13] as technical errata and officially verified.

Our contributions are summarized as follows:

Empirical Study: We present the first systematic study
that characterizes logical ambiguities in verified RFC errata,

resulting in a fine-grained taxonomy that informs the design
of automated detection methods.

Framework: We design and implement RFCScope, the first
approach capable of systematically detecting logical ambigui-
ties in RFCs.

Real-world Impact: RFCScope detected 31 new logical
ambiguities in 14 recent RFCs. Eight of these ambiguities have
been confirmed by RFC authors, and three are now officially
verified errata [14]], [[15], [16].

Data Availability: To facilitate future research and tool
development, we publicly release the full set of categorized
errata reports from our study, the 31 ambiguity findings detected
by RFCScope, and the prompt templates used in our analysis
at: https://github.com/HIPREL-Group/RFCScope.

II. BACKGROUND
A. Request for Comments (RFCs)

Request for Comments (RFCs) are technical documents that
serve as the primary method for standardizing Internet protocols,
published by Internet Engineering Task Force (IETF) [1]]. Each
RFC is assigned a unique number (e.g., RFC 9460 [17]) and
remains immutable once published.
1) RFC Status: In the standardization process, protocol
specifications typically begin as Internet-Drafts [18], which are
subject to iterative review, revision, and community feedback.
Once sufficiently mature, they may be published as RFCs on
the Standards Track, the category used for protocols intended
for widespread deployment and interoperability. To reflect a
protocol’s stability, implementation experience, and the level of
community consensus, Standards Track RFCs progress through
a series of maturity levels defined by the IETF [19], including:
o Proposed Standard: the first official stage; many protocols
remain at this level while still being widely used in practice.
e Draft Standard: an intermediate stage that indicated greater
maturity and implementation experience; this category is
now deprecated and no longer used for new standards.

o Internet Standard: the final stage, indicating that the protocol
is stable, interoperable, and widely deployed.

2) RFC Formats: RFC documents typically follow a struc-
tured format [20]], organized into sections that begin with a
metadata preamble and a table of contents. They often include
standardized sections such as “IANA Considerations” [] and
“References” toward the end of the document.

To effectively convey protocol specifications, RFC specifica-
tions blend informal and formal elements, including natural
language, formal notations, tables, diagrams, pseudocode, and
so on, as shown in Figure E} Most of the content is written in
natural English, making the documents accessible to a wide
audience. At the same time, RFCs frequently describe technical
details such as message formats and protocol procedures using
formal notations. Commonly used notations include Augmented
Backus—Naur Form (ABNF) [21], Abstract Syntax Notation

'TANA maintains registries for coordination between different organizations
maintaining different parts of the Internet. For IETF, IANA allocates and
maintains unique codes and numbering systems (parameters) used in the IETF
technical standards.

- Natural Language (in RFC 9460)

Within a SVCB RRset, all RRs
SHOULD have the same mode. If
an RRset conta: record in
AliasMode, the recipient MUST
ignore any ServiceMode records
in the set.

- Pseudocode (in RFC 9000)

ReadVarint (data) :

// The length of variable-length

inte s is encoded in the

// first two bits of the first byte.
v = data.next_byte()
prefix = v >> 6
length = 1 << prefix

- Formal Notation (in RFC 8461)
The formal definition of the
ABNF [RFC7405], is as follows:

sts-text-record =

" _mta-sts" TXT record, defined using

rsion 1* (sts-field-delim sts-field)
ield-delim]
sts-field = s /

s ; Note that sts-id record
sts-extension

; is required.

- Diagram (in RFC 9085)

Consumer

Fig. 1. Examples illustrate the diverse specification formats used across RFCs.

One (ASN.1) [22], Structure of Management Information
(SMI) [23]], Yet Another Next Generation (YANG) [24]], and
Concise Data Definition Language (CDDL) [25], [26]. In
addition, RFCs may include pseudocode or actual code snippets
to illustrate algorithmic procedures or implementation details.
They also commonly use ASCII art diagrams and tables to
visualize data layouts, protocol flows, or system architectures.

B. Errata Reports for RFCs

Errata reports are official records of errors identified in
RFCs after publication, documenting technical, editorial, or
procedural mistakes and offering corresponding corrections or
clarifications [27]. Since RFCs are immutable once published,
the errata mechanism provides a critical way to notify the
community of known issues, preventing repeated reports and
serving as a stopgap until an updated RFC is released.

Errata are submitted through an interface provided by the
RFC Editor [28] and are classified into two types [27]:

o Editorial: errors in grammar, spelling, formatting, or similar.
e Technical: errors in the technical content of the RFC that
affect its correct interpretation or implementation.
Each erratum is reviewed and assigned one of four statuses [27]:
o Reported: submitted but not yet reviewed.
o Verified: confirmed and corrected if necessary.
e Rejected: found to be incorrect or redundant.
e Held for Document Update: valid but not critical; to be
considered in future revisions.
ITII. RELATED WORK AND MOTIVATION

We describe existing work on investigating and formalizing
protocol specifications. We then highlight the motivation of
our work and how our approach differentiates from prior work.

A. Prior work on RFCs

RFC errata reports. A recent study [29] conducted a
preliminary analysis on RFC errata reports to characterize
the frequency of errata and reporting timelines. However, it did
not examine the content of the errata reports. Our work takes
the first step towards characterizing the types of ambiguity
found in errata reports, which serves as the foundation for

https://github.com/HIPREL-Group/RFCScope

TABLE I
CLASSIFICATION OF 273 VERIFIED TECHNICAL ERRATA REPORTS FROM THE PAST 11 YEARS VIA MANUAL INSPECTION

Main Category (Total Count) Sub-Category Count
(I-1) Direct inconsistency within or across specifications 119
(202) (I-2) Indirect inconsistency within or across specifications 70
(I-3) Inconsistency with commonly accepted knowledge 13
(U-1) Direct under-specification, due to undefined terms 7
; — (U-2) Direct under-specification due to incomplete constraints (w.r.t. implementation feedback) 15
Under-specification [CEl (U-3) Indirect under-specification within or across specifications 10
(U-4) Under-specification due to incorrect or missing references 5

Editorial errors
TANA considerations
Suggestions or proposals

Others (34)

developing automated methods to identify logical ambiguities
in RFC documents.

Identify ambiguities in RFCs. The closest work to ours is
Yen et al. [2], [3], which used a semantic-parsing approach
to semi-automatically identify linguistic ambiguities in RFCs.
However, this work does not consider logical ambiguities that
are context-dependent, such as contradictory or under-specified
statements, spanning across multiple sections, diagrams, or
references. Furthermore, this work relies heavily on manually
written grammar rules that are difficult to generalize and scale.
Automated formal modeling of RFCs. Pacheco et al. [4] used
BERT to extract finite-state machines (FSMs) from RFC text,
then converted these into Promela [37] for model checking.
However, this work required manually annotated training data.
To reduce the manual overhead, recent studies have explored
LLMs, such as GPT-3.5 [38]] and Code Llama [39]], to translate
RFC text into FSMs [40] or other formal specifications [41]].
However, none of these works tackles the challenge of
ambiguities in RFCs, which could result in missing or incorrect
FSM transitions.

B. Prior work on detecting ambiguities in other NL documents

Besides RFCs, there have been studies that leverage LLMs to
(semi-)automate the detection of ambiguities and contradictions
in various protocol specification documents, such as IoT
protocols (e.g., MQTT) [5], safety-critical systems [9], [LO],
and cellular network protocols (e.g., 3GPP) [[1]. In addition
to protocol specifications, there are studies that investigate the
effectiveness of leveraging LLMs to detect ambiguities in other
natural language (NL) documents [7]], [12] or translate NL
descriptions into linear temporal logic (LTL) statements [8]].

C. Motivation for Our Work

Logical ambiguities in RFCs. Prior efforts to detect ambi-
guities in RFCs [2] focus primarily on linguistic ambiguities
using manually-crafted grammar rules. However, a critical gap
remains in identifying logical ambiguities, which can signifi-
cantly impact the correct interpretation and implementation of
protocols, posing risks to Internet interoperability.

Limitations in LLM-based approaches. Although LLMs have
shown promise in detecting ambiguities in natural language
texts [Sl, [71, [9N, [10], [L1], existing methods are typically
tailored to single-document contexts and lack support for
the dense cross-referencing common in RFCs. Approaches

using BERT [4]], rule-based parsing [2]], or even GPT [40],
[41] often suffer from limitations such as reliance on manual
rules, hallucinations, or misinterpretations due to insufficient
context. Logical ambiguities, which may span multiple sections
and documents, present challenges that demand context-aware
reasoning beyond what current automated techniques offer.
Our approach and contributions. We begin with the first
systematic study of RFC errata content to identify and char-
acterize logical ambiguities. These insights guide the design
of RFCScope, our new LLM-based framework for detecting
logical ambiguities in RFCs, addressing key limitations of prior
work. To our knowledge, this is the first approach capable of
systematically detecting logic-level ambiguities in RFCs at
scale, an essential step toward improving protocol clarity and
ensuring consistent implementation across the Internet.

We use the terminology “logically ambiguous bug”, or simply
“bug”, interchangeably with “logical ambiguity” for the rest of
the paper. Note that we use the term “bug” to broadly refer to
any type of ambiguity in the protocol specification, which is
different from software bugs.

IV. STUDY OF LOGICALLY AMBIGUOUS BUGS IN RFCs

To detect logical ambiguities in RFCs, it is essential to first
understand the common types of bugs they contain. To this end,
we conducted the first systematic study aimed at identifying
prevalent types of logical ambiguity in RFCs published in
recent years.

We began by collecting all Standards Track RFCs published
in the past 11 years (from January 2014 to January 2025),
resulting in 1,480 documents. We then gathered the corre-
sponding errata reports by automatically scraping the errata
pages using the RFC Editor’s search interface [42], yielding
1,165 errata reports. Focusing specifically on technical issues
that impact the correct interpretation or implementation of a
specification, we manually inspected the errata reports that are
classified as both Verified and Technical, totaling 273 entries.

Through this analysis, we identified three primary cate-
gories of bugs: 1) Inconsistency: contradictory information
stated in the specification; 2) Under-specification: missing
or incomplete information in the specification; and 3) Other:
ambiguities that do not directly affect protocol semantics,
including syntax or formatting issues, IANA compliance notes,
or general editorial suggestions. The detailed breakdown of
these categories is presented in Table [Il Among the 273 bugs

(I-1) Direct inconsistency

Errata 4865 of RFC 7598
Section 4.3. S46 DMR Option (Spec 1)

- dmr-prefixé6-len:
dmr-prefix6-len:

Allowed values range from 0 to [128.
Allowed values range from 0 to 96.

+

RFC 7599

Section 5.1. Destinations outside the MAP Domain (Spec 2, ref)
The DMR IPv6 prefix length SHOULD be 64 bits long by default and

in any case MUST NOT exceed 96 bits.

(I-2) Indirect inconsistency

Errata 5474 of RFC 7233

Section 2.1. Byte Ranges (Spec 1)
Examples of byte-ranges-specifier values:
The first 500 bytes (byte offsets 0-499, inclusive): bytes=0-499

Section 4.4. 416 Range Not Satisfiable (Spec 2)
For byte ranges, failing to overlap the current extent means that
the first-byte-pos of all of the byte-range-spec values were

- greater than the current length of the selected representation.

+ greater than or equal to the current length of the selected

+ representation.

(I-3) Inconsistency with common knowledge

Errata 6209 of RFC 8152

Section 9. Message Authentication Code (MAC) Algorithms (Spec)

- A MAC, for example, €an be used to prove the identity of the

+ A MAC, for example, cannot be used to prove the identity of the
sender to a third party.

(U-1) Direct under-specification (undefined terms)
Errata 7894 of RFC 8888

Section 3.1. RTCP Congestion Control Feedback Report (Spec)
RTCP Congestion Control Feedback Packets SHOULD include a report

- block for every [active SSRC.

+ block for every C where packets have been received since the

+ previous report generated.

(U-2) Direct under-specification (incomplete constraints)
Errata 5540 of RFC 7728

Section 8.2. PAUSED (Spec)
PAUSED SHALL contain a fixed-length 32-bit parameter at the start
of the Type Specific field with the extended RTP sequence number
of the last RTP packet sent before the RTP stream was paused,
in the same format as the extended highest sequence number
+ received Section 6.4.1 of [RFC3550], or, if no packet has been
+ sent, the value one less than the sequence number that will be
+ chosen for the next packet sent (modulo 2732).

(U-3) Indirect under-specification
Errata 6157 of RFC 7170
Section 4.2.9. Request-Action TLV

The Request-Action TLV MAY be sent by both the peer and the
server. ..

(Spec)

Status
The Status field is one octet. This indicates the result if the
- server does not process the action [requested by the peer.
+ party who receives this TLV does not process the action.

(U-4) Incorrect or missing reference
Errata 4413 of RFC 7584

Section 4.4. STUN Handling in B2BUA with Forked Signaling (Spec)
Because of forking, a B2BUA might receive multiple answers for a
single outbound INVITE. When this occurs, the B2BUA SHOULD follow

— Sections 3.2 or 3.3 for all of those received answers.

+ Sections 4.2 or 4.3 for all of those received answers.

Fig. 2. Representative errata report examples for each bug sub-category identified in our study. Il RFC 7598 [30] Section 4.3 states that the dmr-prefix6-len
parameter can range from O to 128. However, Section 5.1 of the referenced RFC 7599 limits this value to a maximum of 96, creating a direct contradiction.
RFC 7233 [31] Section 4.4 states that a byte range does not overlap with a representation if its first byte position exceeds the representation’s length. However,
Section 2.1 implies that a representation of length N spans bytes 0 to N — 1, so a range starting at byte N also does not overlap. For example, a 500-byte
representation spans 0-499, making a range starting at 500 non-overlapping. RFC 8152 [32] Section 9 incorrectly claims that MACs can prove identity,
despite the well-established fact in networking literature that MACs do not provide identity guarantees. RFC 8888 [33] uses the term active in Section
3.1 without providing a definition. RFC 7728 [34] Section 8.2 omits the case where a stream is paused before any packets are sent, hindering correct
implementation. RFC 7170 [35] Section 4.2.9 does not specify the meaning of the Status field when the Request-Action TLV is sent by the peer, even
though the section indicates that either party may send this TLV. RFC 7584 [36]], Section 4.4 incorrectly refers to non-existent Sections 3.2 and 3.3.

we inspected, 202 fall under inconsistency, 37 under under-
specification, and 34 under other.

We focus on discussing the first two categories, inconsistency
and under-specification, as they pose the most significant risks
to protocol clarity and correctness. In this study, we treat each
section of an RFC as a distinct specification unit.

A. Inconsistency

We further classify inconsistency bugs into the following
three sub-categories:
(I-1) Direct inconsistency within specifications: This sub-
category includes bugs involving explicit contradictions. These
may occur (1) within different parts of the same specification
or (2) between specifications, where the conflicting content
appears either elsewhere in the same RFC or in a referenced
document (which may or may not be an RFC). For example,
as shown in Figure [2] (I-1), RFC 7598 [30] Section 4.3 states
that the dmr-prefix6-len parameter in the S46 DMR
Option can take values from 0 to 128. However, the referenced
Section 5.1 of RFC 7599 specifies that this value must not
exceed 96, resulting in a direct contradiction (Errata 4865 [43]).
We identified 119 bugs in this category.
(I-2) Indirect inconsistency within specifications: This
category includes bugs involving contradictions that are not

explicitly stated but can be inferred. As with direct inconsisten-
cies, these may arise within the same specification or between
specifications, where the conflicting content appears either
elsewhere in the current RFC or in a referenced document.
For instance, as illustrated in Figure [Z] (I-2), RFC 7233 [31]]
Section 4.4 states that a byte range does not overlap with
a representation if its first byte position is greater than the
representation’s length. However, Section 2.1 implies that a
representation of length N spans bytes 0 to N — 1, so a range
starting at byte IV also fails to overlap. For example, a 500-byte
representation spans 0—499, and a range starting at 500 does
not overlap (Errata 5474 [44])). 70 bugs are in this category.
(I-3) Inconsistency with common knowledge: These bugs
arise when a specification contradicts widely accepted domain
knowledge, independent of any referenced documents. For
example, as shown in Figure E] (I-3), RFC 8152 [32] Section 9
incorrectly states that MACs (Message Authentication Codes)
can be used to prove identity, although it is well-established
in the networking literature that MACs do not provide identity
guarantees (Errata 6209 [45]). 13 bugs are in this subcategory.
B. Under-specification

We further classify the under-specification bugs into the
following four subcategories:

T
= | 4 [RECeE)
AN T O\ — RECorer
) RFC-ref D1 €1
non- 7
— = |, [k
RFC (r) Context Context " - RECoef
Partitioner 7 T
Constructor n] n
Initial Errata; Final Errata;
- : :

Evaluator

Analyzer

Initial Errata,

Manual
Inspection

Final Errata

Fig. 3. Overview of RFCScope.

(U-1) Direct under-specifications due to undefined terms:
This sub-category includes bugs involving explicitly missing
information, specifically, undefined terms in the specification.
The missing definitions cannot be found in the current RFC
or any of its referenced documents. For example, as shown
in Figure 2] (U-1), RFC 8888 [33]] uses the term active in
Section 3.1, but the document does not define it anywhere
(Errata 7894 [46]). We identified 7 bugs in this category.

(U-2) Direct under-specification due to incomplete con-
straints (based on implementation feedback): This sub-
category includes bugs where the specification omits crucial
constraints needed for correct protocol implementation, such
as unaddressed scenarios or missing cases. The missing
information cannot be inferred from the current RFC or
any referenced documents, and instead requires input from
implementation feedback and discussions with the authors.
For example, as demonstrated in Figure [2] (U-2), in RFC
7728 [34], Section 8.2 omits the situation where a stream is
paused before any packets have been sent, which hinders correct
implementation (Errata 5540 [47]). We identified 15 bugs in
this category.

(U-3) Indirect under-specifications: This sub-category in-
cludes bugs involving implicitly missing information, such as
incomplete constraints. These issues arise when: (1) a part
of the specification lacks details provided elsewhere in the
same specification, or (2) it omits information found in another
specification, either within the current RFC or in a referenced
document (which may or may not be an RFC). For example,
as shown in Figure [2] (U-3), RFC 7170 [35] Section 4.2.9
does not specify the semantics of the Status field when the
Request-Action TLV is sent by the peer. However, other parts
of the section indicate that both the server and the peer (i.e.,
any party) may send this TLV (Errata 6157 [48]). We identified
10 bugs in this category.

(U-4) Incorrect/missing references: This sub-category in-
cludes two distinct cases: (1) references to non-existent sections,
and (2) references to existing sections that do not contain the
expected information. For instance, as illustrated in Figure [2]
(U-4), RFC 7584 [36]], Section 4.4 incorrectly refers to non-
existent Sections 3.2 and 3.3 (Errata 4413 [49]). 5 bugs are in
this category: three involved references that were not provided
or were irrelevant, and two referred to non-existent sections.

C. Summary

By systematically identifying and categorizing these issues,
we gain critical insight into the underlying causes of ambi-
guity. Overall, our study reveals that logical ambiguities in
protocol specifications often stem from inconsistencies and
under-specifications within the document itself, in relation
to referenced documents, established domain knowledge, or
practical implementation feedback. This understanding lays
a foundation for our proposed approach to detecting logical
ambiguities in protocol specifications.

V. RFCSCOPE

In this section, we introduce RFCScope, an LLM-based
approach designed to detect all the logically ambiguous bug
types identified in our study.

A. Why Use LLMs?

As shown in the Background Section (Section [[I-A), RFCs
pose a unique difficulty for automated analysis: they combine
a variety of informal and formal elements, including natural
language, formal notations, tables, diagrams, and pseudocode.
Effectively detecting bugs in such documents requires the
ability to understand and process this diverse range of content.
Moreover, as discussed in the Study Section (Section [[V),
logically ambiguous bugs often depend on knowledge beyond
the RFCs and referenced documents, including common net-
work knowledge (bug type I-3), and practical implementation
feedback (bug type U-2). Furthermore, many of these logic-
level ambiguities, especially indirect ones (bug type I-2 and
U-3), demand reasoning capabilities that go beyond simple
pattern matching or rule-based techniques.

These difficulties highlight the need for a detector that can
handle heterogeneous content, leverage broad knowledge, and
perform solid reasoning. LLMs are well-suited to meet these
requirements, making them a natural choice as the engine of
our approach to detecting logical ambiguities in RFCs.

B. Challenges of Using LLMs

However, applying LLMs to the task of detecting logically
ambiguous bugs in RFCs introduces four challenges:
Challenge 1: Lengthy RFCs: RFCs are often lengthy, fre-
quently exceeding the context window of even the most
advanced LLMs. This limitation makes it challenging to input
the entire document at once, resulting in incomplete analysis

N [®s Context Constructor RFC Ref o
match & E r
- Paragraphsl extract. | (iagosee)
REC () 5 —>{(_<tag. sec>) »
l <tag, keyphrase> nd S e 7| Ref
. o a gectlon
e emantic ontent
3 l Search
Paragraphs) [ret tag I non-RFC Ref
= = =
)
g Ref sec . —) | & > Ref
Parser RefResolver Match & | Summary,
RefSummarizer
Context

Fig. 4. Overview of Context Constructor.

and missed dependencies.

Challenge 2: Multi-document reasoning: Many bugs require
reasoning across multiple referenced documents (bug type I-
1, I-2, U-2, U-3, and U-4), placing additional strain on the
model’s ability to integrate context across inputs.

Challenge 3: Limited domain knowledge: While LLMs pos-
sess broad general knowledge, they often lack the specialized
understanding needed to detect subtle, logically ambiguous
bugs in network protocol specifications.

Challenge 4: Prone to hallucination: LLMs can generate
plausible-sounding but incorrect statements. In the context of
protocol analysis, such hallucinations can lead to false bug
reports or misinterpretation of specification details.

C. Overview

Figure [3] illustrates the overall workflow of RFCScope.
RFCScope is composed of four automated components: Context
Constructor, Partitioner, Analyzer, and Evaluator.

To address Challenges 1 and 2 (i.e., the difficulty of
processing lengthy RFCs and their references), RFCScope
includes a Context Constructor to extract only the most relevant
information from all referenced documents (including both
RFCs and non-RFC documents), and a Partitioner to divide the
RFC and its associated context into smaller, manageable seg-
ments. To tackle Challenge 3 (i.e., the LLM’s limited domain-
specific knowledge) and Challenge 4 (i.e., LLM hallucination),
we guide the LLM-based Analyzer with well-defined bug types
and examples identified in our study, helping the LLM focus
on relevant ambiguities and reason more effectively within the
domain of Internet protocol specifications. To further mitigate
Challenge 4 (i.e., LLM hallucination), RFCScope includes an
LLM-based Evaluator that verifies the reasoning steps behind
each detected bug and filters out invalid ones.

Given an RFC document r, RFCScope proceeds as follows:
1) The Context Constructor extracts key contextual information
from all referenced documents. 2) The Partitioner splits both the
RFC r and its associated context into smaller, aligned partitions.
3) For each partition p and its corresponding context c, the
LLM-based Analyzer identifies potential bugs and generates
candidate bug reports. 4) These reports are then passed to
the Evaluator, which checks the reasoning and filters out
hallucinated or invalid cases. 5) Finally, the remaining reports
are manually reviewed by human experts to produce the final
bug reports.

We describe each component of RFCScope in detail in the
following subsections.

9.6. Use of HTTPS RRs in Other Protocols

All HTTP connections to named origins are eligible to use HTTPS RRs,
even when HTTP is used as part of another protocol or without an
explicit HTTP-related URI scheme (Section 4.2 of [HTTP]). For
example, clients that support HTTPS RRs and implement [WebSocket]
using the altered opening handshake from [FETCH-WEBSOCKETS] SHOULD
use HTTPS RRs for the requestURL.

15. References
15.1. Normative References

[HTTP] Fielding, R., Ed., Nottingham, M.,

"HTTP Semantics", STD 97,
2022,

Ed., and J. Reschke, Ed.,

, DOI 10.17487/RFC9110, June

<https://www.rfc-editor.org/info/rfc9110>.

[WebSocket] Fette, I. and A. Melnikov, "The WebSocket Protocol",

, DOI 10.17487/RFC6455, December 2011,

<https://www.rfc-editor.org/info/rfc6455>.

15.2. Informative References

[FETCH-WEBSOCKETS] WHATWG,
2023,

"WebSockets Living Standard", September
<https://websockets.spec.whatwg.org/>.

Fig. 5. Paragraph 1 of Section 9.6 from RFC 9460 [17]]. This paragraph in-
cludes three reference tags: HTTP, WebSocket, and FETCH-WEBSOCKETS.
The reference to HTTP explicitly includes a referenced section, Section
4.2 (highlighted in red), while the other two do not specify sections. RFEC
references are highlighted in green, and non-RFC references in yellow. The
phrase “opening handshake,” highlighted in blue, is inferred as the keyphrase
for the WebSocket and FETCH-WEBSOCKETS references by RefResolver.

D. Context Constructor

We define the context of an RFC document, or of a specific
section within it, as the RFC document’s content itself, along
with key information from all referenced external sources,
including both RFC and non-RFC documents. To address
Challenges 1 and 2, our Context Constructor avoids including
the full content of referenced documents, which is often too
long for language models to process and typically unnecessary.
Such content can overwhelm the model or introduce irrelevant
distractions. Instead, we selectively extract the key information
explicitly or implicitly referred to by the input RFC.

Figure [] illustrates our overall workflow for extracting refer-
ences. To enable fine-grained and accurate context construction,
we first split the input RFC document into paragraphs. For each
paragraph, we use IETF’s RFC2HTML tool [50] to parse the
content and extract all embedded reference tags and referenced
sections. For example, as shown in Figure [5] a paragraph
from RFC 9460 [17] contains three reference tags: HTTP,
WebSocket, and FETCH-WEBSOCKETS, along with one
explicitly referenced section: Section 4.2.

Given the extracted reference tags and referenced sections,
we first use RefResolver (OpenAl’'s GPT-40 [51]) to associate
reference tags with the corresponding referenced section
numbers when they are explicitly provided (e.g., 4.2 for
HTTP in Figure [5). For references without explicit section

The "opening handshake" in the WebSockets Living Standard refers to the
initial process that establishes a WebSocket connection between a
client and a server. This handshake is an HTTP/1.1 request/response
exchange that upgrades the connection from HTTP to the WebSocket
protocol.

Client Handshake Request:
The client initiates the handshake by sending an HTTP GET request with
specific headers...

Server Handshake Response:
Upon receiving the client’s request, the server responds with an HTTP
101 Switching Protocols status code and includes the following headers

Fig. 6. Summary of the non-RFC reference to FETCH-WEBSOCKETS for
the keyphrase “opening handshake,” generated by RefSummarizer.
numbers (e.g., WebSocket and FETCH-WEBSOCKETS), we
prompt GPT-40 to generate a keyphrase that captures the
intended purpose of the reference. In Figure [3] the extracted
keyphrase for both WebSocket and FETCH-WEBSOCKETS
is “opening handshake.” Note that we use GPT-40 for mapping
reference tags to sections and extracting keyphrases because
these tasks require only lightweight language understanding.
GPT-40 performs them efficiently in a zero-shot setting while
being faster and more cost-effective than reasoning models.

For RFC references, we extract only the content of specific
sections referred to, based on our observation that RFCs almost
always refer to particular sections, explicitly or implicitly,
rather than the entire document. For RFC references with
explicit section numbers, we directly retrieve the contents of the
referenced sections. For RFC references with only keyphrases,
we identify the most relevant sections using semantic search via
LangChain [52], which leverages vector embeddings to match
phrases with semantically similar document segments. For
instance, for the WebSocket reference in Figure [5] semantic
search retrieves Section 4.1 of RFC 6455 as the most relevant
match for the keyphrase “opening handshake.”

For non-RFC references, we extract summaries of the
referred sections when available; otherwise, we summarize
the entire document. In most cases, the input RFC refers only
to specific concepts in non-RFC references rather than quoting
exact content. We use RefSummarizer (OpenAl GPT-40 Search
Preview [53]]) to search for these documents online using their
title and URL (when available). The model then generates a
summary based on either the explicitly referenced section or,
if no section is provided, the content relevant to the inferred
keyphrase. For example, FETCH-WEBSOCKETS in Figure [3]
is a non-RFC document without a specific section reference
but is associated with the keyphrase “opening handshake.”
Using the keyphrase, the model produces a summary of the
corresponding content, as shown in Figure[6] Note that we used
GPT-40 Search Preview to summarize non-RFC references, as
it was the only OpenAl model with web access at the time
of submission. Since these references span diverse formats
(webpages, PDFs, research papers), building custom scrapers
was impractical. GPT-4o0 Search Preview reliably retrieved and
summarized relevant content from a title or URL, leveraging
its strength in “needle-in-a-haystack™ tasks.

E. PFartitioner

After the context is extracted, RFCScope employs the
Partitioner component to split the RFC, along with its associated

Algorithm 1 Partitioning an RFC into smaller sections
1: Input: RFC r, context ctx

2: Output: Partitioned set P

3: Parameter: max section level d, max token length [
4: P < partition(r, ctx, d)

5: function PARTITION(p, ctx, d)

6: if d = 0 or !p.hasSubsections or len(p+ctz.get(p)) <
7: return {p}

8: else

9: P« 0

10: for each subsection p,,; in p

11: P «+ P U partition(psyp, ctx,d — 1)

12: end for

13: return P

14: end if

15: end function

context, into smaller segments that fit within the context window
of LLMs. This step directly addresses Challenge 1 and 2, which
stems from the lengthy RFCs and their references.

RFCs are inherently hierarchical, organized into sections and
nested subsections (e.g., Section 5, Section 5.1, Section 5.1.2).
Rather than splitting the text arbitrarily or at fixed intervals,
RFCScope leverages this structure to perform semantic-aware
partitioning. Each partition aligns with the document’s existing
section boundaries, preserving the logical flow and intent of
the specification.

To strike a balance between completeness and efficiency,
the Partitioner avoids overly fine-grained splits (e.g., always
breaking down to the lowest-level subsections), which would
increase the number of model calls and reduce efficiency.
Instead, it aims to preserve as much relevant information as
possible within each partition while ensuring that the content
remains within the model’s token limit.

This process is guided by Algorithm [I] which recursively
traverses the RFC’s section hierarchy. For each section, it
checks two conditions: 1) whether the section and its context
fit within the LLM’s token budget /, and 2) whether the section
is within a user-defined maximum level d in the hierarchy.
If a section satisfies these conditions—either because it’s
sufficiently small, has no further subsections, or the section
level limit is reached—it is selected as a standalone partition.
Otherwise, the algorithm recursively partitions its subsections,
proceeding only as deep as necessary.

In summary, by selecting the largest possible self-contained
sections with their relevant context that fit within the LLM
input limits, the Partitioner achieves: 1) logical coherence,
by aligning partitions with meaningful section boundaries;
and 2) processing efficiency, by minimizing the number of
model invocations. This hierarchical, token-aware partitioning
strategy is a practical solution to the challenge of processing
long, structured technical documents like RFCs, preserving
their semantic integrity while enabling scalable and accurate
LLM-based analysis.

F. Analyzer

After partitioning the RFC into manageable, context-rich
segments, RFCScope uses its LLM-based Analyzer, powered
by OpenAI’s 03-mini [54)], to detect logically ambiguous
bugs. We selected 03-mini for its strong reasoning capabilities,
which are critical for this task, requiring deep analysis such
as explaining contradictions, validating under-specifications,
and applying checklist-based criteria. Compared to full-sized
reasoning models, 03-mini delivers strong chain-of-thought
performance at lower cost. While GPT-4o0 is often used in
LLM-as-a-Judge setups, recent work [S5], [56] shows that 03-
mini outperforms GPT-40 in reasoning-intensive evaluations. To
address Challenge 3 (limited domain knowledge) and Challenge
4 (LLM hallucination), the Analyzer is guided by carefully
designed prompts that incorporate domain-specific insights
from our study of real-world RFC errata. This enables the
model to generate initial errata reports.

For each partitioned section, the Analyzer is prompted
twice: once to detect inconsistencies and once to detect under-
specifications. These prompts incorporate all seven identified
bug sub-categories (I-1 to I-3 and U-1 to U-4) along with
definitions and representative examples for each sub-category,
enabling the model to reason explicitly about each potential
logic-level ambiguity in RFCs.

A key feature of our design is that the LLM is explicitly
instructed to perform chain-of-thought prompting [S7] for every
reported bug. This includes the concepts analyzed, the support-
ing evidence, and the logical steps used to reach a conclusion.
This reasoning is not only valuable for interpretability; it is
also essential for the Evaluator, which uses it to independently
verify the model’s output and filter out false positives.

By combining empirically identified bug categories, cor-
responding real-world examples, and structured reasoning
instructions, RFCScope transforms a general-purpose LLM
into a focused analysis engine for protocol specifications. This
approach allows it to go beyond superficial keyword matching
and instead emulate the kind of analytical rigor used in real-
world errata reviews.

G. Evaluator

Once the initial errata reports are generated by the Analyzer,
RFCScope invokes its LLM-based Evaluator, also powered by
OpenAl’s 03-mini [54] (chosen for the same reasons as in the
Analyzer), to independently assess the validity of each report.
This stage plays a critical role in addressing Challenge 4 (LLM
hallucination) by acting as a conservative second-pass filter to
improve the accuracy and credibility of the detected bugs.

A core design principle of RFCScope is that the Evaluator
is explicitly instructed to validate the reasoning steps provided
by the Analyzer. It must reconstruct its analysis from scratch,
critically assess the justification, and determine whether the
reported issue constitutes a real error in the RFC. This ensures
that every reported bug is not only plausible, but also logically
sound and independently validated.

The evaluation prompts enforce strict decision criteria
grounded in the identified bug types from our study:

« Inconsistencies: The model is reminded that a valid report
must present a clear and concrete contradiction that fits a
recognized subcategory of inconsistency.

« Under-specifications: The model is guided to reject reports
if: 1) the allegedly missing information appears later in
the document, 2) the missing detail is irrelevant to the
document’s scope, or 3) the omission is intentional (e.g.,
left to implementer discretion or obvious from context). It
must also verify that the issue fits a recognized subcategory
of under-specification.

Only reports that pass this validation are retained as final
potential errata. By coupling deep analysis with structured eval-
uation, RFCScope significantly reduces the risk of hallucinated
bug reports. This layered design transforms general-purpose
LLM:s into a robust, self-checking system for discovering high-
quality ambiguities in protocol specifications. Furthermore, the
inclusion of detailed reasoning in each errata report simplifies
subsequent manual inspection.

We make the prompt templates for both the Ana-
lyzer and Evaluator publicly available at https://github.com/
HIPREL-Group/RFCScopel

H. Manual Inspection

We conduct a manual inspection to further eliminate false
positives from the final set of potential errata. The manual
step was conducted by two of the co-authors: a third-year
undergraduate student and a recent graduate. On average, it took
approximately 5 minutes to inspect each bug report generated
by RFCScope.

This inspection is informed not only by the RFC itself and
its references, but also by several supplementary sources: 1)
IETF Datatracker [58]]: provides access to all draft versions of
the RFC and related working group discussions, allowing us to
trace when a potential issue was introduced and whether it was
previously addressed. This helped confirm bugs by identifying
issues such as definitions removed in later drafts or inconsistent
renaming across versions. 2) IETF Mail Archive [59]: archives
mailing list discussions from various IETF working groups,
offering deeper context and rationale behind specific edits or
omissions during RFC development. We searched email threads
to understand update rationales, verify whether a suspected bug
was intentional or debated, and trace the history of unresolved
issues. 3) GitHub Repositories [60]: some working groups
manage RFC drafts on GitHub. The commit history, issues,
and pull requests provide fine-grained insight into document
changes and technical discussions. We used commit messages
and blame annotations to date changes and find linked issues or
pull requests for related discussions, and cross-referenced mail
archives to clarify decisions. 4) Supplemental References:
we consulted IANA registries, prior RFCs, and textbooks to
clarify protocol parameters, terminology, and conventions.

RFCScope finally outputs the potential errata that remain
valid after this manual inspection.

VI. EVALUATION

In this section, we evaluate the effectiveness of RFCScope
in detecting logical ambiguities for RFC specifications.

https://github.com/HIPREL-Group/RFCScope
https://github.com/HIPREL-Group/RFCScope

38 38

35 Errata count after

Manual Inspection

30 Evaluator
- Analyzer
=25
S

20
‘2 20 19
= 16
S5 = 14 14 1o
u 12 12, 12 12
10 0 10, 10,
8 8 8 7 8 7

5 g 6 4 6 6 6 5 g 6 g 5
2 @ S 2 ol &

0 1 1 1 1 1 1 1, 1
IR) SO A D A LSO >
AR N I S UAIRA b‘\’»’bb&‘oQ\\bQ
O G G P P g o o 8 P P S o o o o

RFC

Fig. 7. Errata counts produced by individual components of RFCScope,
Analyzer, Evaluator, and Manual Inspection, across the 20 target RFCs. Bar
labels indicate cumulative values at each step of the pipeline.

A. Experimental Setup

1) Target RFCs: We evaluate RFCScope on the 20 most
recent RFCs related to the Domain Name System (DNS), a core
Internet protocol responsible for translating human-readable
domain names into IP addresses. These RFCs, all classified
as Proposed Standards and published by the IETF between
November 2021 and the present, represent recent and actively
maintained specifications in the networking domain. These
include RFCs 9157 [61], 9224 [62], 9250 [63]], 9432 [64],
9445 [65]], 9460-9464 [17], [66l, (671, [68], [69], 9471 [70I,
9520 [71l, 9527 [72l, 9540 [73l, 9567 [74], 9606 [75],
9615 [76], 9619 [77], 9660 [78], and 9704 [79].

2) Parameter Settings: For the Partitioner in RFCScope, we
set the maximum section level d = 3 and the token budget
[= 175,000 to ensure that each partition remains within the
token limits of LLMs while preserving meaningful context.
Importantly, limiting the section depth to d = 3 does not restrict
RFCScope’s ability to detect deeper ambiguities or affect the
depth of semantic reasoning. We selected d = 3 based on
empirical analysis of the evaluated RFCs, where this depth
consistently produced semantically coherent partitions while
remaining within the 200,000-token context window.

3) Bug Validation: To validate ambiguity findings generated
by RFCScope, we perform manual investigation within our
group and then contact the original RFC authors to seek
feedback. If the authors encourage submitting an Errata Report
for the finding, we then submit it to the IETF errata portal [[13].
This direct engagement, encouraged by our IETF/DNS col-
laborator, provides richer feedback—for instance, one flagged
finding was clarified as an intentional design choice under future
discussion. However, the process is slow and labor-intensive, as
authors may need to revisit old development history. To avoid
overwhelming authors, particularly those involved in multiple
RFCs, we are in the process of contacting them gradually.

4) Baselines: RFCScope is the first approach designed
to detect logically ambiguous bugs in RFCs. However, as
noted in Section four relevant approaches exist for
ambiguity detection in natural language documents: Feng et
al.[5], Mahbub et al.[9], Gértner et al.[10]], and Rahman et
al.[L1]. Among these, only Mahbub et al. [9]] is both applicable

lnconsmtenC\

(17)

Under—speclﬁcatlon
(14)

&»

Fig. 8. Distribution of bugs detected by RFCScope across categories.
and reproducible to RFCs, and we use it as our baseline.
B. Research Questions

« RQ1: How many logical ambiguities can RFCScope detect?

o RQ2: What logical ambiguity types can RFCScope detect?

« RQ3: How do individual components contribute to the
effectiveness of RFCScope?

« RQ4: How does RFCScope’s performance compare to
existing approaches?

C. RQI: How many ambiguities can RFCScope detect?

As a result, RFCScope discovered a total of 31 new
ambiguity findings across 14 out of the 20 targeted RFCs. None
of the 31 reported ambiguities had been previously documented
as errata. So far, eight ambiguities have been confirmed,
categorized as follows: three fully confirmed and verified
ambiguities; two (partially) confirmed, where clarifications
would be beneficial but do not fall under the scope of an official
Errata; and three that clarified the document’s intended meaning
but were not considered issues (e.g., intentional design choices).
We have submitted the three fully confirmed ambiguities to
the IETF errata portal [13] as technical errata, namely, Errata
8431 [14]], Errata 8426 [15]], and Errata 8590 [16]]. All three
Errata reports have been officially verified.

Figure [/| presents a detailed breakdown of how individual
components, particularly the Analyzer and Evaluator, contribute
to the detection across the 20 target RFCs. In total, the Analyzer
produced 281 initial bug reports across all target RFCs, with the
number of initial reports per RFC ranging from 6 (minimum,
in RFC 9157) to 38 (maximum, in RFCs 9460 and 9704).
From these 281 initial reports, the Evaluator filtered out 144
reports, yielding 137 potential errata across 20 RFCs. The
number of potential errata per RFC ranged from 2 (minimum,
in RFCs 9520 and 9540) to 20 (maximum, in RFC 9460). A
final manual inspection step further removed 106 potential bug
reports, resulting in a total of 31 final ambiguity findings.

In summary, RFCScope effectively identifies new logical
ambiguities, demonstrating its practical value for improving
the clarity of real-world RFC specifications.

D. RQ2: What types of ambiguities can RFCScope detect?

As a result, RFCScope successfully detects both inconsis-
tency and under-specification ambiguities, covering all seven
identified subtypes (I-1 to I-3, U-1 to U-4). Figure [§| shows the
distribution of the 31 ambiguity findings detected across the
14 target RFCs: 17 are inconsistency bugs, including 5 direct
(I-1), 10 indirect (I-2), and 2 against common knowledge (I-3);

(I-1) Direct inconsistency
Errata discovered in RFC 9464 (Confirmed but intentional)

Section 3.2. ENCDNS_DIGEST_INFO Configuration Payload Attribute

(Spec 1, fig.)

IR| Attribute Type | Length

|
| Num Hash Algs | ADN Length | . |

Fig. 3: ENCDNS_DIGEST_INFO Attribute Format in CFG_REQUEST

IR| Attribute Type | Length

| Num Hash Algs | ADN Length | - |

Fig. 4: ENCDNS_DIGEST_INFO Attribute Format in CFG_REPLY or CFG_SET

Appendix A. Configuration Payload Examples
ENCDNS_DIGEST_INFO (0, (SHA2-256, SHA2-384,
Fig. 5: Example of a CFG_REQUEST

(Spec 2, ex.)
SHA2-512))

ENCDNS_DIGEST_INFO (0, SHA2-256,
Fig. 6: Example of a CFG_REPLY

8b6e7a5971ccbbb0bddb5a7l. . .)

(I-2) Indirect inconsistency
Errata discovered in RFC 9445 (Verified as Errata 8431

Section 5. An Example: Applicability to Encrypted DNS Provisioning
(Spec 1)
.., it replies with an Access-Accept message (possibly after having
sent a RADIUS Access-Challenge...

Section 7. Table of Attributes (Spec 2, table)

| Access-— |Access- | Access- | Challenge |# | Attribute |
| Request |Accept | Reject | | |
| 0+ |0+ | 0 | 0 |1245.3| DHCPv6-Options
e e e o o Fom +
| 0+ |0+ | 0 |

Errata discovered in RFC 9619 (Verified as Errata 8426

Section 1. Introduction (Spec)

..; and update the DNS base specification to clarify the allowable
values of the QDCODE parameter in the specific case of DNS messages
with OPCODE = 0.

(U-1) Direct under-specification (undefined terms)
Errata discovered in RFC 9461 (Confirmed but intentional)

Appendix A. Mapping Summary (Spec)

| *Required keysx | alpn or lequivalent

(U-2) Direct under-specification (incomplete constraints)
Errata discovered in RFC 9471 (Confirmed)

Section 2.3. Glue for Cyclic Sibling Domain Name Servers
The use of sibling domain name servers can introduce cyclic
dependencies. This happens when [one domain specifies name servers from
a sibling domain, and vice versa.

(spec)

. . .
(U-3) Indirect under-specification

Errata discovered in RFC 9224 (Confirmed)

Section 4. Bootstrap Service Registry for Domain Name Space (Spec 1)
If the longest match results in multiple entries, then those entries

are considered equivalent.

Section 5.1. Bootstrap Service Registry for IPv4 Address Space

(Spec 2)
(Missing specification on multiple longest matches...)
Section 5.2. Bootstrap Service Registry for IPv6 Address Space

(Spec 3)
(Missing specification on multiple longest matches...)
(U-4) Incorrect or missing reference
Errata discovered in RFC 9704 (Verified as Errata 8590)
Section 6.2. Using DNSSEC (Spec 1)

The client ... performs full DNSSEC validation locally [RFC6698] .

RFC 6698 (Spec 2, ref)
Section 1.2. Securing the Association of a Domain Name with a Server’s
Certificate

This document only relates to securely associating certificates for
TLS and DTLS with host names; retrieving certificates from DNS for
other protocols is handled in other documents.

Section 1.3. Method for Securing Certificate Associations
This document does not specify how DNSSEC validation occurs...

Fig. 9. Representative ambiguity example detected by RFCScope for each bug subtype. In RFC 9464 [69], Section 3.2 illustrates the fields of the
ENCDNS_DIGEST_INFO attribute in CFG_REQUEST and CFG_REPLY. However, the examples in Appendix A do not show all fields, resulting in direct
inconsistency. The authors confirmed that it is intentional to only include key fields in the examples. In RFC 9445 [65]], Section 7 includes an attribute
table that incorrectly lists “Challenge” instead of “Access-Challenge”. This constitutes an indirect inconsistency, as it is clear from the rest of the document
that “Access-Challenge” was the intended term. In RFC 9619 [77]], Section 1 consistently refers to the field that indicates the number of questions in
the Question section of a DNS message as “QDCOUNT?”, except in its last sentence where it instead refers to “QDCODE?”. It is clear from the rest of the
document that this was not the intended term, resulting in an indirect inconsistency. Appendix A of RFC 9461 [66] specifies the required keys for the
DNS SVCB mapping as “alpn or equivalent”. Although the document mentions other keys that can indicate the value of “alpn” in its absence, it does not
define any notion of “equivalence” to “alpn”, resulting in an undefined term. The authors confirmed that this is an intentional placeholder for future protocol
development. In RFC 9471 [[70], Section 2.3 discusses cyclic sibling domain name servers but only addresses two-node cycles (i.e., between two domains).
The lack of guidance on longer cycles results in an incomplete constraint. The authors confirmed that it would be beneficial to provide further explanation on
cyclic dependencies. While Section 4 of RFC 9224 [62] addresses multiple longest matches for DNS, Section 5, covering IPv4 and IPv6, does not mention
this scenario, suggesting an indirect under-specification. The authors confirmed that the multiple longest matches scenario serves as a safeguard mechanism and
should apply to IPv4/IPv6 addresses (Section 5) as well. In RFC 9704 [79], Section 6.2 refers to RFC 6698 in the context of “full DNSSEC validation”,
but RFC 6698 specifies a different protocol and does not discuss DNSSEC validation. Therefore, this reference is incorrect.

and 14 are under-specification bugs, including 4 direct bugs
due to undefined terms (U-1), 3 direct bugs due to incomplete
constraints (U-2), 5 indirect (U-3), and 2 caused by incorrect
or missing references (U-4).

Figure [9] presents a representative ambiguity example de-
tected by RFCScope for each subtype, including three officially
verified bugs and four confirmed bugs. Note that official errata
reports include both the ambiguity and its proposed fix (as
shown in Figure [2). Since RFCScope focuses solely on bug
detection, it usually reports only the identified issue. For
submitted errata, we incorporate fixes based on discussions
with the RFC authors. From the shown bug examples, we can
see that RFCScope achieves comprehensive coverage across a
wide spectrum of logically ambiguous bug types, from subtle
terminology gaps to complex cross-reference inconsistencies.
These results confirm RFCScope’s capability to detect a diverse

range of subtle, complex ambiguities across all identified bug
categories, demonstrating its robustness and deep semantic
understanding of protocol specifications.

E. RQ3: How does each component contribute to RFCScope?

To evaluate the contribution of RFCScope’s components,
we conducted an ablation study with three variants: Al:
removing domain-specific knowledge (i.e., identified bug-types
and examples in our study as well as specialized instructions)
from the Analyzer. A2: removing the Context Constructor. A3:
removing the Partitioner. Figure [I0] summarizes the results.
Overall, each component is essential: removing any one sub-
stantially reduces the number of detected ambiguities. Among
them, the Partitioner has the greatest impact, followed by the
Context Constructor, and then domain-specific knowledge in
the Analyzer. Furthermore, to evaluate whether the Evaluator

Ambiguity Count
2 3 4

0 1 5 6
| o
9157 2 2 2 1 0
9224 H 5 5 0 0
92501 0 0 0 0 0
9432{ 0 0 0 0 0
9445 4 1 1 0 0 0
94601 3 1 1 0 0
9461 1 1 1 1 0 0
9462 1 1 1 0 1 0
9463 1 1 0 1 0 0
O 94641 1 I I 0 0
94711 1 1 0 0 0
95201 O 0 0 0 0
9527 {15 2 1 1 0
95401 0 0 0 0 0
95671 2 2 2 1 1
96061 1 1 0 0 0
96151 0 0 0 0 0
96191 1 1 1 1 0
96601 0 0 0 0 0
97041 5 1 1 0 0

RFCScope Al A2 A3 Mahbub
- etal.

Fig. 10. Results against three variants and one existing approach: Al excludes
domain knowledge from the Analyzer; A2 excludes the Context Constructor;
A3 excludes the Partitioner; and Mahbub et al. applies the approach from [9].

incorrectly discards potentially valid bugs, we conducted a
focused analysis. We randomly selected 10 RFCs and manually
reviewed all 71 initial bug reports that had been filtered out by
the Evaluator. Among these, only one potentially valid bug was
incorrectly discarded (as shown in Figure [TI)), demonstrating
the Evaluator’s high precision in preserving valid bugs while
effectively eliminating false positives.

F. RQ4: How does RFCScope compare to existing approaches?

We applied the only applicable baseline, Mahbub et al.’s
approach [9]], to our 20 RFC subjects. As shown in Figure [T0]
it detected only one ambiguity, which is far fewer than
RFCScope. Its limited performance likely results from (1)
relying on very generic prompts without guidance on the types
of inconsistencies and under-specifications in RFCs, and (2)
not leveraging LLLM reasoning through the commonly used
chain-of-thought prompting technique [S7].

VII. DISCUSSION

Threats to validity. /) False negatives. Our work priori-
tizes precision but also considers recall. In our evaluation
(Section [VI-E)), we manually reviewed 71 reports discarded
by the Evaluator and found only one potentially valid bug
across ten RFCs. This indicates a conservative, high-precision
pipeline, though false negatives may remain. We plan to add a
complementary Evaluator to mitigate this. 2) Completeness of
bug types. RFCScope follows a taxonomy derived from verified
technical errata over the past 11 years, making ambiguities
outside this scope less likely to be detected. While we
are the first to formalize logic-level ambiguity categories,
expanding to broader flaw types remains an important direction.
3) Context construction limitations. RFCScope uses LLM-
generated summaries for non-RFC references and semantic
search for RFC content. This may introduce noise from

Errata identified by Analyzer but discarded by Evaluator in RFC 9445

Section 4. Passing RADIUS DHCP Options Attributes by DHCP Relay Agents
to DHCP Servers (Spec 1)

Section 4.1. Context

The RADIUS Attributes DHCP suboption [RFC4014]
agent to pass identification and authorization attributes received
during RADIUS authentication to a DHCPv4 server.

(Spec 2)
enables a DHCPv4 relay

Fig. 11. The bug discovered by the Analyzer but discarded by the Evaluator.
In RFC 9445, the title of Section 4 uses “DHCP”, suggesting applicability to
both DHCPv4 and DHCPv6. However, Section 4.1 only mentions “DHCPv4”
without DHCPv6.

imprecise keyphrases or section mismatches, affecting detection
quality. 4) Reproducibility. As with many LLM-based systems,
RFCScope depends on proprietary models that may evolve.
Despite safeguards such as structured prompts, validation, and
manual inspection, full reproducibility can be affected by API
drift or model updates.

Future directions of RFC specification. RFCs are not written
for a general audience, but rather a small set of domain experts
and protocol implementers. This contributes to a considerable
number of ambiguities we discovered, which would benefit
from further specifications but could also be inferred implicitly
by domain experts. However, with the rise of LLMs and the
potential use of LLMs to interpret protocol specifications and
generate implementations, the “users” of RFCs are silently
shifting from (only) human experts to automated tools. Such
trend calls the question on future requirements for RFC
specifications, which likely need to be more precise and clearly-
defined if they were to be interpreted by automated tools.

VIII. CONCLUSION

This paper introduces RFCScope, the first scalable frame-
work for detecting logically ambiguous bugs in Internet
protocol specifications. Grounded in the first systematic study of
verified technical errata from Standards Track RFCs, RFCScope
addresses a critical yet underexplored challenge: identifying
subtle inconsistencies and under-specifications that undermine
protocol clarity and interoperability. By leveraging LLMs
through a carefully designed pipeline—spanning targeted
context construction, semantic partitioning, bug-type-aware
prompting, and structured reasoning validation—RFCScope
demonstrates robust capabilities in uncovering logic-level
ambiguities across a diverse set of recent RFCs. Its effectiveness
is evidenced by the discovery of 31 previously undocumented
ambiguity findings, several of which have already been
confirmed or officially verified. RFCScope establishes a new
standard for ambiguity detection in protocol specifications, and
paves the way for more reliable, interpretable, and automatable
Internet standards.

IX. ACKNOWLEDGMENT

We thank Shumon Huque for helping examine our findings
and connect us with RFC authors. We thank all RFC authors
for their thoughtful responses to our findings, including but not
limited to Ben Schwartz, Dan Wing, Marc Blanchet, Mohamed
Boucadair, Alan DeKok, Joe Abley, and Ray Bellis. This work
is supported by National Science Foundation CNS-2154962
and CNS-2319421, and the Commonwealth Cyber Initiative.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

[21]

[22]

(23]

REFERENCES

Internet Engineering Task Force (IETF). https://www.ietf.org/. (Accessed:
September 30, 2025).

Jane Yen, Tamds Lévai, Qinyuan Ye, Xiang Ren, Ramesh Govindan, and
Barath Raghavan. Semi-automated protocol disambiguation and code
generation. In Proceedings of the ACM SIGCOMM 2021 Conference.
ACM, 2021.

Jane Yen, Ramesh Govindan, and Barath Raghavan. Tools for disam-
biguating RFCs. In Proceedings of the Applied Networking Research
Workshop. ACM, 2021.

Maria Leonor Pacheco, Max von Hippel, Ben Weintraub, Dan Goldwasser,
and Cristina Nita-Rotaru. Automated attack synthesis by extracting finite
state machines from protocol specification documents. In 2022 IEEE
Symposium on Security and Privacy. IEEE, 2022.

Yufei Feng, Yujie Zhang, and Yiming Chen. Detecting contradictions
from IoT protocol specification documents based on neural generated
knowledge graph. Applied Sciences, 2023.

Alvaro Veizaga, Seung Yeob Shin, and Lionel C. Briand. Automated
smell detection and recommendation in natural language requirements.
IEEE Transactions on Software Engineering, 2024.

Alessandro Fantechi, Stefania Gnesi, Lucia Passaro, and Laura Semini.
Inconsistency detection in natural language requirements using ChatGPT:
A preliminary evaluation. In 2023 IEEE International Requirements
Engineering Conference, 2023.

Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt,
and Caroline Trippel. nl2spec: Interactively translating unstructured
natural language to temporal logics with large language models. In
Computer Aided Verification, 2023.

Taslim Mahbub, Dana Dghaym, Aadhith Shankarnarayanan, Taufiq
Syed, Salsabeel Shapsough, and Imran Zualkernan. Can GPT-4
Aid in detecting ambiguities, inconsistencies, and incompleteness in
requirements analysis? A comprehensive case study. IEEE Access, 2024.
Thomas Girtner and Daniel Gohlich. Automated requirement contra-
diction detection through formal logic and LLMs. Automated Software
Engineering, 2024.

Mirza Masfiqur Rahman, Imtiaz Karim, and Elisa Bertino. CellularLint: A
systematic approach to identify inconsistent behavior in cellular network
specifications. In Proceedings of the 33rd USENIX Security Symposium,
2024.

Clement Guitton, Reto Gubelmann, Ghassen Karray, Simon Mayer, and
Aurelia Tamo-Larrieux. Identifying open-texture in regulations using
LLMs. Artificial Intelligence and Law, 2025.

Internet Engineering Task Force. RFC editor errata search. https://www
rfc-editor.org/errata_search.php. (Accessed: September 30, 2025).

RFC Editor. Errata report 8431 for RFC 9445: RADIUS extensions
for DHCP-configured services. https://www.rfc-editor.org/errata/eid8431.
(Accessed: September 30, 2025).

RFC Editor. Errata report 8426 for RFC 9619: In the DNS, QDCOUNT
is (usually) one. https://www.rfc-editor.org/errata/eid8426. (Accessed:
September 30, 2025).

RFC Editor. Errata report 8590 for RFC 9704: Establishing local DNS
authority in validated split-horizon environments. https://www.rfc-editor
org/errata/eid8590. (Accessed: October 2, 2025).

Benjamin M. Schwartz, Mike Bishop, and Erik Nygren. Service binding
and parameter specification via the DNS (SVCB and HTTPS resource
records). Internet Engineering Task Force, 2023. Request for Comments:
9460.

Internet Engineering Task Force. Internet drafts. https://www.ietf.org/
participate/ids. (Accessed: September 30, 2025).

Christian Huitema, Jon Postel, and Steve Crocker. Not all RFCs are
standards. Network Working Group, 1995. Request for Comments: 1796.
Heather Flanagan and Sandy Ginoza. RFC style guide. Internet
Architecture Board (IAB), 2014. Request for Comments: 7322.

Dave Crocker and Paul Overell. Augmented BNF for syntax specifica-
tions: ABNF. Network Working Group, 2008. Request for Comments:
5234.

ITU Telecommunication Standardization Sector. Introduction to ASN.1.
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx. (Accessed:
September 30, 2025).

Jiirgen Schonwiélder, David T. Perkins, and Keith McCloghrie. Structure
of management information version 2 (SMIv2). Network Working Group,
1990. Request for Comments: 2578.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]

[51]

Martin Bjorklund. The YANG 1.1 data modeling language. Internet
Engineering Task Force, 2016. Request for Comments: 7950.

Henk Birkholz, Christoph Vigano, and Carsten Bormann. Concise data
definition language (CDDL): A notational convention to express concise
binary object representation (CBOR) and JSON data structures. Internet
Engineering Task Force, 2019. Request for Comments: 8610.

Internet Engineering Steering Group. Guidelines for the use of formal
languages in IETF specifications, 2001.

Alice Russo and Jean Mahoney. Current process for handling RFC errata
reports. RFC Series Working Group, 2025. Internet-Draft: draft-rpc-
errata-process-03.

Internet Engineering Task Force. RFC editor: Report new errata. https:
/Iwww.rfc-editor.org/errata.php. (Accessed: September 30, 2025).
Stephen McQuistin, Mladen Karan, Prashant Khare, Colin Perkins,
Matthew Purver, Patrick Healey, Ignacio Castro, and Gareth Tyson. Errare
humanum est: What do RFC errata say about internet standards? In
2023 7th Network Traffic Measurement and Analysis Conference (TMA).
IEEE, 2023.

Tomek Mrugalski, Ole Trgan, Ian Farrer, Simon Perreault, Wojciech
Dec, Congxiao Bao, Leaf Yeh, and Xiaohong Deng. DHCPv6 options
for configuration of softwire address and port-mapped clients. Internet
Engineering Task Force, 2015. Request for Comments: 7598.

Roy T. Fielding, Yves Lafon, and Julian Reschke. Hypertext transfer
protocol (HTTP/1.1): Range requests. Internet Engineering Task Force,
2014. Request for Comments: 7233.

Jim Schaad. CBOR object signing and encryption (COSE). Internet
Engineering Task Force, 2017. Request for Comments: 8152.
Zaheduzzaman Sarker, Colin Perkins, Varun Singh, and Michael A.
Ramalho. RTP control protocol (RTCP) feedback for congestion control.
Internet Engineering Task Force, 2021. Request for Comments: 8888.
Bo Burman, Azam Akram, Roni Even, and Magnus Westerlund. RTP
stream pause and resume. Internet Engineering Task Force, 2016. Request
for Comments: 7728.

Hao Zhou, Nancy Cam-Winget, Joseph A. Salowey, and Steve Hanna.
Tunnel extensible authentication protocol (TEAP) version 1. Internet
Engineering Task Force, 2014. Request for Comments: 7170.

Ram Ravindranath, Tirumaleswar Reddy.K, and Gonzalo Salgueiro.
Session traversal utilities for NAT (STUN) message handling for SIP
back-to-back user agents (B2BUAs). Internet Engineering Task Force,
2015. Request for Comments: 7584.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 1997.

OpenAl Platform. GPT-3.5 Turbo. https://platform.openai.com/docs/
models/gpt-3.5-turbo, (Accessed: September 30, 2025).

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez,
et al. Code Llama: Open foundation models for code, 2023.

Prakhar Sharma and Vinod Yegneswaran. PROSPER: Extracting Protocol
Specifications Using Large Language Models. In Proceedings of the
22nd ACM Workshop on Hot Topics in Networks. ACM, 2023.

Martin Duclos, Ivan A. Fernandez, Kaneesha Moore, Sudip Mittal, and
Edward Zieglar. Utilizing Large Language Models to Translate RFC
Protocol Specifications to CPSA Definitions, 2024.

Internet Engineering Task Force. RFC editor search. |https://www,
rfc-editor.org/search/rfc_search.phpl (Accessed: September 30, 2025).
RFC Editor. Errata report 4865 for RFC 7598. |https://www.rfc-editor
org/errata/eid4865, (Accessed: September 30, 2025).

RFC Editor. Errata report 5474 for RFC 7233. |https://www.rfc-editor
org/errata/eid5474. (Accessed: September 30, 2025).

RFC Editor. Errata report 6209 for RFC 8152. https://www.rfc-editor
org/errata/eid6209. (Accessed: September 30, 2025).

RFC Editor. Errata report 7894 for RFC 8888. https://www.rfc-editor,
org/errata/eid7894, (Accessed: September 30, 2025).

RFC Editor. Errata report 5540 for RFC 7728. |https://www.rfc-editor
org/errata/eid5540. (Accessed: September 30, 2025).

RFC Editor. Errata report 6157 for RFC 7170. https://www.rfc-editor,
org/errata/eid6157, (Accessed: September 30, 2025).

RFC Editor. Errata report 4413 for RFC 7584. |https://www.rfc-editor
org/errata/eid4413| (Accessed: September 30, 2025).

Internet Engineering Task Force. RFC2HTML. https://github.com/
ietf-tools/rfc2html. (Accessed: September 30, 2025).

OpenAl Platform. GPT-4o. https://platform.openai.com/docs/models/
gpt-4o. (Accessed: September 30, 2025).

https://www.ietf.org/
https://www.rfc-editor.org/errata_search.php
https://www.rfc-editor.org/errata_search.php
https://www.rfc-editor.org/errata/eid8431
https://www.rfc-editor.org/errata/eid8426
https://www.rfc-editor.org/errata/eid8590
https://www.rfc-editor.org/errata/eid8590
https://www.ietf.org/participate/ids
https://www.ietf.org/participate/ids
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.rfc-editor.org/errata.php
https://www.rfc-editor.org/errata.php
https://platform.openai.com/docs/models/gpt-3.5-turbo
https://platform.openai.com/docs/models/gpt-3.5-turbo
https://www.rfc-editor.org/search/rfc_search.php
https://www.rfc-editor.org/search/rfc_search.php
https://www.rfc-editor.org/errata/eid4865
https://www.rfc-editor.org/errata/eid4865
https://www.rfc-editor.org/errata/eid5474
https://www.rfc-editor.org/errata/eid5474
https://www.rfc-editor.org/errata/eid6209
https://www.rfc-editor.org/errata/eid6209
https://www.rfc-editor.org/errata/eid7894
https://www.rfc-editor.org/errata/eid7894
https://www.rfc-editor.org/errata/eid5540
https://www.rfc-editor.org/errata/eid5540
https://www.rfc-editor.org/errata/eid6157
https://www.rfc-editor.org/errata/eid6157
https://www.rfc-editor.org/errata/eid4413
https://www.rfc-editor.org/errata/eid4413
https://github.com/ietf-tools/rfc2html
https://github.com/ietf-tools/rfc2html
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o

[52]
[53]
[54]

[55]

[56]

(571

[58]
[59]

[60]

[61]

[62]

[63

[64]

[65]

[66

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

LangChain. Build a semantic search engine. https://python.langchain
com/docs/tutorials/retrievers. (Accessed: September 30, 2025).

OpenAl Platform. GPT-40 Search Preview. https://platform.openai.com/
docs/models/gpt-40-search-preview. (Accessed: September 30, 2025).
OpenAl Platform. o03-mini. https://platform.openai.com/docs/models/
03-mini, (Accessed: September 30, 2025).

Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Y. Tang, Ale-
jandro Cuadron, Chenguang Wang, Raluca Ada Popa, and Ion Stoica.
JudgeBench: A benchmark for evaluating LLM-based judges, 2025.
Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern
Chan, Leon Maksin, Rachel Dias, Evan Mays, Benjamin Kinsella, Wyatt
Thompson, Johannes Heidecke, Amelia Glaese, and Tejal Patwardhan.
PaperBench: Evaluating Al’s ability to replicate Al research, 2025.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei
Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in
neural information processing systems, 2022.

Internet Engineering Task Force. IETF datatracker. https://datatracker
ietf.org. (Accessed: September 30, 2025).

Internet Engineering Task Force. IETF mail list archives.
//mailarchive.ietf.org/arch. (Accessed: September 30, 2025).
Martin Thomson and Barbara Stark. Working group github usage
guidance. Internet Engineering Task Force, 2020. Request for Comments:
8874.

Paul E. Hoffman. Revised IANA considerations for DNSSEC. Internet
Engineering Task Force, 2021. Request for Comments: 9157.

Marc Blanchet. Finding the authoritative registration data access protocol
(RDAP) service. Internet Engineering Task Force, 2022. Request for
Comments: 9224.

Christian Huitema, Sara Dickinson, and Allison Mankin. DNS over
dedicated QUIC connections. Internet Engineering Task Force, 2022.
Request for Comments: 9250.

Peter van Dijk, Libor Peltan, Ondfej Sury, Willem Toorop, Kees
Monshouwer, Peter Thomassen, and Aram Sargsyan. DNS catalog
zones. Internet Engineering Task Force, 2023. Request for Comments:
9432.

Mohamed Boucadair, Tirumaleswar Reddy.K, and Alan DeKok. RADIUS
extensions for DHCP-configured services. Internet Engineering Task
Force, 2023. Request for Comments: 9445.

Benjamin M. Schwartz. Service binding mapping for DNS servers.
Internet Engineering Task Force, 2023. Request for Comments: 9461.
Tommy Pauly, Eric Kinnear, Christopher A. Wood, Patrick McManus, and
Tommy Jensen. Discovery of designated resolvers. Internet Engineering
Task Force, 2023. Request for Comments: 9461.

Mohamed Boucadair, Tirumaleswar Reddy.K, Dan Wing, Neil Cook,
and Tommy Jensen. DHCP and router advertisement options for the
discovery of network-designated resolvers (DNR). Internet Engineering
Task Force, 2023. Request for Comments: 9463.

Mohamed Boucadair, Tirumaleswar Reddy.K, Dan Wing, and Valery
Smyslov. Internet key exchange protocol version 2 (IKEv2) configuration
for encrypted DNS. Internet Engineering Task Force, 2023. Request for
Comments: 9464.

Mark P. Andrews, Shumon Huque, Paul Wouters, and Duane Wessels.
DNS glue requirements in referral responses. Internet Engineering Task
Force, 2023. Request for Comments: 9471.

Duane Wessels, William Carroll, and Matthew Thomas. Negative caching
of DNS resolution failures. Internet Engineering Task Force, 2023.
Request for Comments: 9520.

Daniel Migault, Ralf Weber, and Tomek Mrugalski. DHCPv6 options for
the homenet naming authority. Internet Engineering Task Force, 2024.
Request for Comments: 9527.

Tommy Pauly and Tirumaleswar Reddy.K. Discovery of oblivious
services via service binding records. Internet Engineering Task Force,
2024. Request for Comments: 9540.

Roy Arends and Matt Larson. DNS error reporting. Internet Engineering
Task Force, 2024. Request for Comments: 9567.

Tirumaleswar Reddy.K and Mohamed Boucadair. DNS resolver infor-
mation. Internet Engineering Task Force, 2024. Request for Comments:
9606.

Peter Thomassen and Nils Wisiol. Automatic DNSSEC bootstrapping
using authenticated signals from the zone’s operator. Internet Engineering
Task Force, 2024. Request for Comments: 9615.

Ray Bellis and Joe Abley. In the DNS, QDCOUNT is (usually) one.
Internet Engineering Task Force, 2024. Request for Comments: 9619.

https:

(78]

(791

Hugo Salgado, Mauricio Vergara Ereche, and Duane Wessels. The DNS
zone version (ZONEVERSION) option. Internet Engineering Task Force,
2024. Request for Comments: 9660.

Tirumaleswar Reddy.K, Dan Wing, Kevin Smith, and Benjamin M.
Schwartz. Establishing local DNS authority in validated split-horizon
environments. Internet Engineering Task Force, 2025. Request for
Comments: 9704.

https://python.langchain.com/docs/tutorials/retrievers
https://python.langchain.com/docs/tutorials/retrievers
https://platform.openai.com/docs/models/gpt-4o-search-preview
https://platform.openai.com/docs/models/gpt-4o-search-preview
https://platform.openai.com/docs/models/o3-mini
https://platform.openai.com/docs/models/o3-mini
https://datatracker.ietf.org
https://datatracker.ietf.org
https://mailarchive.ietf.org/arch
https://mailarchive.ietf.org/arch

	Introduction
	Background
	Request for Comments (RFCs)
	RFC Status
	RFC Formats

	Errata Reports for RFCs

	Related Work and Motivation
	Prior work on RFCs
	Prior work on detecting ambiguities in other NL documents
	Motivation for Our Work

	Study of Logically Ambiguous Bugs in RFCs
	Inconsistency
	Under-specification
	Summary

	RFCScope
	Why Use LLMs?
	Challenges of Using LLMs
	Overview
	Context Constructor
	Partitioner
	Analyzer
	Evaluator
	Manual Inspection

	Evaluation
	Experimental Setup
	Target RFCs
	Parameter Settings
	Bug Validation
	Baselines

	Research Questions
	RQ1: How many ambiguities can RFCScope detect?
	RQ2: What types of ambiguities can RFCScope detect?
	RQ3: How does each component contribute to RFCScope?
	RQ4: How does RFCScope compare to existing approaches?

	Discussion
	Conclusion
	Acknowledgment
	References

