
International Journal on Software Tools for Technology Transfer (2020) 22:601–615
https://doi.org/10.1007/s10009-020-00577-w

STTT

Special Issue: SPIN 2019

A study of learning likely data structure properties using machine
learning models

Muhammad Usman1 ·Wenxi Wang1 · Kaiyuan Wang1 · Cagdas Yelen1 · Nima Dini1 · Sarfraz Khurshid1

Published online: 7 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Data structure properties are important for many testing and analysis tasks. For example, model checkers use these properties
to find program faults. These properties are often written manually which can be error prone and lead to false alarms. This
paper presents the results of controlled experiments performed using existing machine learning (ML) models on various data
structures. These data structures are dynamic and reside on the program heap. We use ten data structure subjects and ten ML
models to evaluate the learnability of data structure properties. The study reveals five key findings. One, most of the ML
models perform well in learning data structure properties, but some of theMLmodels such as quadratic discriminant analysis
and Gaussian naive Bayes are not suitable for learning data structure properties. Two, most of the ML models have high
performance even when trained on just 1% of data samples. Three, certain data structure properties such as binary heap and
red black tree are more learnable than others. Four, there are no significant differences between the learnability of varied-size
(i.e., up to a certain size) and fixed-size data structures. Five, there can be significant differences in performance based on the
encoding used. These findings show that using machine learning models to learn data structure properties is very promising.
We believe that these properties, once learned, can be used to provide a run-time check to see whether a program state at a
particular point satisfies the learned property. Learned properties can also be employed in the future to automate static and
dynamic analysis, which would enhance software testing and verification techniques.

Keywords Data structure invariants · Machine learning · Korat · Learnability

1 Introduction

Data structure invariants play an extensive role in the verifica-
tion and validation of software systems. These are properties
that data structures should satisfy, and are also termed as

B Muhammad Usman
muhammadusman@utexas.edu

Wenxi Wang
wenxiw@utexas.edu

Kaiyuan Wang
kaiyuanw@utexas.edu

Cagdas Yelen
cagdas@utexas.edu

Nima Dini
nima.dini@utexas.edu

Sarfraz Khurshid
khurshid@utexas.edu

1 University of Texas at Austin, Austin, TX 78712, USA

class invariants in object-oriented programming [39,45]. For
example, a binary tree should satisfy properties such that
there is no cycle in the tree and that all nodes are reachable
from the root node.

We believe that data structure invariants play a vital role
in the field of software testing. Model checkers usually use
these invariants as assertions and try to violate these invariant
properties in order to find bugs in programs. If an invariant is
violated, it exposes a bug in the software system [25,44,67].
Data structure repair techniques use these invariants for error
recovery [13,18]. Many automated test generation tools [4,
38] employ these invariants to serve as test assertions.

Data structure invariants are oftenmanually written which
is why they are error prone. Hence, it is crucial to have
a testing mechanism to provide a high confidence about
the correctness of data structure invariants. Prior techniques
used deep semantic analysis [9,32,47,52,55,69] and static
and dynamic analysis [11,14,19,34,40,43,47,52,55,56,69] to
solve the problem of testing data structure invariants.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00577-w&domain=pdf

602 M.Usman et al .

While prior approaches showed promising results, we
believe machine learning (ML) is another direction to solve
this problem. To the best of our knowledge, few people
have worked on the learnability of data structure proper-
ties [21,41]. We hypothesize that ML models can learn these
properties and be used to test a data structure invariant, or
find bugs in its implementation.

This paper presents a controlled empirical study of apply-
ing ten existing ML models to learn ten widely used data
structure properties. These ML models include decision tree
[51], ensemble tree classifiers, i.e., random forest tree [30],
gradient boosting tree [23] and Adaboost tree [22], support
vector machine [10], multi-layer perceptron [48], k-nearest
neighbor [1], Gaussian naive Bayes [53], logistic regression
classifier [2] and quadratic discriminant analysis [68]. Thus,
this study uses a range of ML models. A variety of data
structure subjects are also used so that we can see the gener-
alization of ML models in learning data structure properties.
These models have also been used in some recent studies
[4,18,21]. Data structure subjects used in this study include
binary heap, binary search tree, binary tree, directed acyclic
graph, disjoint set, Fibonacci heap, heap array, red black tree,
sorted list and singly linked list.

A state-of-the-art test input generation tool named Korat
[4,37] was used to create datasets for training and testing.
Korat is written in Java, and each of the data structure invari-
ants has a repOK predicate which is a check for properties of
each structure. For example, for a binary search tree, repOK
checks whether there are no cycles in the tree and all the
elements are in the correct order. Korat takes as input a size
parameter φ which sets the maximum size of the generated
data structure. For example, ifφ is 10, it generates all possible
binary search trees with up to 10 nodes.

Our study methodology is as follows. For each data struc-
ture invariant, we first use Korat to generate four datasets,
namely α, β, γ and δ. For α, we only generate data structures
with exact size of φ. For β, we generate data structures with
sizes ranging from 1 to φ. Datasets γ and δ are like α and β,
respectively, except that we convert them to one-hot encod-
ing format (OHE) [28]. We provide detailed explanation of
selecting the size φ in our evaluation (Sect. 3.1). We use
Korat to generate all non-isomorphic valid and invalid data
structures. The number of invalid structures is significantly
larger than the number of valid structures because there are
only a limited number of valid program states whereas there
can be many invalid program states. For example, given a red
black tree with 10 nodes, Korat generated 32,074,894 invalid
red black trees and only 17,160 valid red black trees. This
data imbalance is problematic because a naive ML model
will learn to classify all instances as negative and still yield
high accuracy. Therefore, we use the undersampling tech-
nique [29] to balance the datasets.

The size of the train and test data also affects the accuracy
of ML models. Note that it might be infeasible to generate
all positive and negative samples for a data structure invari-
ant with a large size. For example, to generate all valid and
invalid binary treeswith 20 nodes,Korat has to explore a state
space of 2180 candidates. To make our experiments feasible,
we train and evaluate the performance of ML models using
datasets with a manageable size (between 5 and 10 nodes).
We performed all experiments with five different train–test
ratios, including 75:25, 50:50, 25:75, 10:90 and 1:99. It was
interesting to see how the ML models perform when trained
on just 1% of dataset and tested on 99% of the dataset. To
the best of our knowledge, this is the first work to study the
performance of ML models using a train–test ratio of 1:99.
We performed experiments to compare the learnability of
varied-size data structures with the learnability of fixed-size
data structures. In addition, we also studied if converting
Korat’s default representation to a one-hot encoding format
affects the learnability of data structure properties.

In summary, this paper extends the previous work [64] in
four directions:

– This study includes experiments with four additional
ML models including quadratic discriminant analysis,
Gaussian naive Bayes, k-nearest neighbor and logistic
regression classifier.

– This study extends previous experiments with an extreme
train–test ratio of 1:99. The results show that it is possible
to trainMLmodels on a small subset of a dataset and still
achieve high performance.

– This work compares the learnability of varied-size data
structures with the learnability of fixed-size data struc-
tures.

– This work studies the impact on the performance of using
one-hot encoding representation, compared with Korat’s
default encoding.

Our study revealed five key findings:

– While most ML models are highly accurate in learning
data structure properties, some ML models are not suit-
able for learning data structure properties, i.e., Gaussian
naive Bayes (GNB) and quadratic discriminant analysis
(QDA).

– Decreasing the train–test ratio from75:25 to 1:99 reduces
accuracy by at most 6%. This result opens the possibility
of learning data structure properties of larger sizes.

– Certain data structure properties are more learnable than
others, e.g., binary heap and red black tree.

– There is no significant difference between the learnability
of varied- and fixed-size data structures.

123

A study of learning likely data structure properties using machine learning models 603

– One-hot encoding representation hinders the perfor-
mance of varied-size data structures but improves the
performance of fixed-size data structures.

The results of our extensive study show the feasibility of
usingMLmodels to learn data structure properties. Test gen-
eration tools can generate data structure instances and simply
use trained ML models to verify if these instances are valid.
We believe that verification using trained MLmodels will be
more efficient, compared to executing numerous checks on
each data structure instance. Thus, the use of ML models in
software analysis holds a promising future, and we hope that
machine learning could be employed for enhancing software
reliability.

2 Background

This section introduces Korat and the ten ML models used
in our study. It also explains data structure encoding format.

2.1 Korat

Korat is an automated test generation tool which generates all
possible inputs given a repOK method, finitization on input
domain and a Java predicate. Korat executes repOK for each
possible data structure and filters them into valid (for which
repOK returns true) and invalid structures (forwhich repOK
returns false). Korat is efficient in that it prunes the search
space by looking at the field accesses while still keeping the
search complete and correct. Korat also generates only non-
isomorphic structures, thus reducing the number of generated
data structures.

To illustrate, Fig. 1 shows the SinglyLinkedList (SLL)
class, including the repOk predicate and finitization fin-

SinglyLinkedList. TheSLLhas a header field of type Node
and a size field of type integer. The Node class declares
an element field and a next field, representing the value
of node and node next to it. The method repOk returns
true if the list does not have any cycle and has the cor-
rect value for size, false otherwise. The finitization method
finSinglyLinkedList specifies a bound on the total num-
ber of nodes, and the minimum and maximum values for
size.

Korat internally represents each candidate structure using
a candidate vector of integer indices. The vector length rep-
resents the number of object fields to search, and it depends
on the finitization. To illustrate, for a finitization of up to 3

nodes (Node 1, Node 2 and Node 3) and size equal to 3,
Korat creates a candidate vector of length 8: Index 0 repre-
sents the value of the header field; index 1 represents the size
(and its value is fixed as 0 since the size is restricted to be 3);

and indexes 2 and 3 represent the integer value and the next
node of Node 1, respectively; likewise, indexes 4, 5 and 6,
7 represent the value and next node of Node 2 and Node 3,
respectively. The value of each index represents a node range
from 0 to 3, representing four possibilities: [null, Node 1,
Node 2 and Node 3]. The list header has four possible val-
ues, and the list size is fixed to 1. The value and next node
fields of each of the three nodes have four possible values.
This finitization defines a bounded exploration space of size
4 × 1 × (4 × 4)3 = 16,384. The Korat search generates the
following candidate vectors for a SLL using this finitization:

0 0 0 0 0 0 0 0 :: 0
1 0 0 0 0 0 0 0 :: 0 2 3 1

1 1 0 0 0 0 0 0 :: 0 2 3 1

...................................

1 0 0 2 1 1 0 0 :: 0 2 3 4 5

1 0 0 2 1 2 0 0 :: 0 2 3 4 5

1 0 0 2 1 3 0 0 :: 0 2 3 4 5 6

1 0 0 2 1 3 1 0 :: 0 2 3 4 5 6 7 1 ∗ ∗ ∗
...................................

Each row shows two entities separated by ::. The first entity
on the left represents the candidate vector. The second entity
on the right represents the field access order. Valid structures
are annotated with ***.

To illustrate, the candidate vector [1 0 0 2 1 2 0 0]

represents an invalid SLL as shown in Fig. 2. This candidate
vector shows that Node 1 is the header node. The next node
of Node 1 is Node 2 and its value is 0. The next node of Node
2 is Node 2 itself and its value is 1. The next node ofNode 3 is
null and its value is 0. SinceNode 2 has a self-loop (cycle), it
is an invalid SLL. Another example candidate vector [1 0 0

2 1 3 1 0] represents a valid SLL as shown in Fig. 3. This
candidate vector shows that Node 1 is the header node. The
next node of Node 1 is Node 2 and its value is 0. Similarly,
the next node of Node 2 is Node 3 and its value is 1. The next
node of Node 3 is null and its value is 1. Since the SLL has
no cycle and it has size 3 with 3 nodes reachable from the
header, the SLL is valid.

2.2 Machine learningmodels

Tenmachine learningmodels were used in this study, namely
decision tree [51], ensemble tree classifiers, i.e., random for-
est tree [30], gradient boosting tree [23], Adaboost tree [22],
support vector machine [10], multi-layer perceptron [48],
k-nearest-neighbor [1], Gaussian naive Bayes [53], logistic
regression classifier [2] and quadratic discriminant analysis
[68].

123

604 M.Usman et al .

Fig. 1 SinglyLinkedList Java class with repOK and finitization methods

2.2.1 Decision trees

Decision trees apply trees as classifiers. The leaf nodes rep-
resent the labels of the classes, and the inner nodes are a
test on the feature. Decision trees are simple models that are
easy to train and can be highly accurate in some cases. How-
ever, they are not good at modeling complex relationships
and often suffer from over-fitting.

2.2.2 Random forest tree

Random forest tree uses bagging (bootstrap aggregating)
technique. This algorithm trains various decision trees with

Fig. 2 An invalid SLL

Fig. 3 A valid SLL

different characteristics which are then combined into one
decision tree. Generally, the combined “forest” performs bet-

123

A study of learning likely data structure properties using machine learning models 605

ter than decision tree, since they reduce variance without
increasing bias. Furthermore, it reduces over-fitting which is
one of the biggest problems for decision trees. Note that ran-
dom forest uses highly efficient bagging techniques, which
makes them highly usable and important in the field of ML.

2.2.3 Gradient boosting tree

A gradient boosting tree is a combination of numerous deci-
sion trees. A differentiable loss function is used, and the trees
learn a set of parameters, which results in the lowest value
for loss function.

2.2.4 Adaboost decision tree

An Adaboost tree is a type of ensemble tree. It is built on a
set of decision trees, and this algorithm gradually learns from
mistakes to improve itself over time. It analyzes which data
samples weremisclassified in each iteration. It then increases
the weight of those data samples and tries to get them right in
the next iterations. Data samples that are classified correctly
are assigned a lower weight. Gradually, it separates the eas-
ier data samples from harder to classify data samples, from
which the algorithm learns to do the classification.

2.2.5 Support vector machine

It is a non-probabilistic binary linear classifier. Data are
mapped to a higher dimensionwhichmakes data samples lin-
early separable. This is called the Kernel Trick and is highly
useful when the number of features is larger than available
data samples for training. This model can work on a variety
of kernels. However, it is sometimes difficult to choose the
right kernel function, since finding a kernel metric together
with the right hyper-parameters is not trivial.

2.2.6 Multi-layer perceptron

A multi-layer perceptron is one neural network kind. It con-
sists of at least three layers where the first layer is known
as the input layer and the last layer is known as the output
layer. Layers between the first and the last layer are known
as hidden layers. There can be multiple hidden layers with
numerous neurons in each layer. They are often fully con-
nected with each other. Each connection has a weight which
is updated in each iteration using stochastic gradient descend
[54]. As the number of hidden layers increases, the complex-
ity of the model increases. And the accuracy increases up to
a point where the model starts to over-fit and the accuracy
starts to decrease. Finding the optimal number of hidden lay-
ers and neurons is often a difficult task. These models also
need a large number of data samples for training. Therefore,
they are often used to learn complex properties.

2.2.7 K-nearest neighbor

This algorithm is based on the principle of majority voting.
Here, K means the number of nearest neighbors. For each
data sample, it looks at the nearest k neighbors and chooses
the majority class of the neighbors. Selecting the right value
for k is important for the model’s performance.

2.2.8 Gaussian naive Bayes

Gaussian naive Bayes assumes that the underlying dis-
tribution follows a Gaussian distribution. It is a simple
probabilistic algorithm and has been widely used for text
classification. This classifier only requires a small amount
of training data which is why the training process is often
fast for this model. However, when the conditional indepen-
dence assumption of the Gaussian distribution is violated,
this model may perform poorly.

2.2.9 Logistic regression classifier

This classifier uses a logistic function and assumes that the
feature variables are dichotomous with no outliers in the
dataset. It also assumes that there is little or no correlation
between features. This algorithm estimates the logarithm of
the odds which is a linear combination of features, and max-
imizes the likelihood function.

2.2.10 Quadratic discriminant analysis

Quadratic discriminant analysis creates a quadratic boundary
between classes with numerous hyper-parameters. However,
if there are many classes where the number of data samples is
limited, this classifier may not perform well. In addition, this
classification method assumes that the samples in each class
follow a normal distribution. This would make it perform
poorly if the assumption is violated, although it allows the
covariance of each class to be different.

2.3 Data structure encoding

Korat represents data structures in a way that can be used
as inputs for machine learning models without a lot of pre-
processing. For a Korat state vector, we simply use it as the
feature vector of the ML models. Each element in the vec-
tor has a value between 0 and the number of the possible
values of that element. We mark valid data structures as pos-
itive samples (label 1) and invalid data structures as negative
samples (label 0).

123

606 M.Usman et al .

3 Experimental evaluation

This section explains our study methodology and evalua-
tion results on the ten data structure properties using ten ML
models. The ML models include decision tree (DT) [51],
ensemble tree classifiers, i.e., random forest tree (RFT) [30],
gradient boosting tree (GBT) [23],Adaboost tree (ABT) [22],
support vector machine (SVM) [10], multi-layer perceptron
(MLP) [48], k-nearest neighbor (KNN) [1], Gaussian naive
Bayes (GNB) [53], logistic regression classifier (LRC) [2]
and quadratic discriminant analysis (QDA) [68].

We used ten standard data structure subjects from the pub-
licly available Korat distribution [37], namely binary heap
(BH), binary search tree (BST), binary tree (BT), directed
acyclic graph (DAG), disjoint set (DS), Fibonacci heap (FH),
heap array (HA), red black tree (RBT), sorted list (SL) and
singly linked list (SLL). Prior work used similar subjects for
their evaluation [7,15–17,46,60].
Execution platform All experiments were performed on a
machine with a 4-core 2.20 GHz Intel processor and 16GB
of RAM, running Ubuntu 16.04 LTS.

3.1 Generation of datasets

For each data structure subject, we used Korat [4] to generate
four datasets denoted by α, β, γ and δ. Each dataset contains
positive samples that represent the caseswhen adata structure
property holds and negative samples that represent the cases
where the data structure property does not hold. For each data
structure,Korat generates feature vectors in a format such that
each bit represents a node or an element. Korat also generates
ground truth labels for each data sample. The size of the
feature vector was kept constant to make it compatible with
existing ML tools. In the future, we plan to study the impact
of feature vectors with variable length on the learnability of
ML models.

For each data structure subject, more negative data sam-
ples were generated as compared to positive data samples.
This is expected since the number of invalid data structures
is much higher than valid data structures. Without sampling
datasets, we will bias our models to always predict nega-
tive class and still achieve high accuracy. Thus, we used the
undersampling technique [50] so that we have the same num-
ber of positive and negative samples in our dataset. We kept
all of the positive data samples and randomly selected the
same number of negative samples. Besides, we do not have
any duplicated samples in our datasets. For dataset α, the size
(φ) of each data structure subject was chosen such that Korat
generates at least 10,000 positive samples. For dataset β,
size from 1 up to φ was chosen so that a comparison between
the two types of datasets can be made. The only difference
between α and β datasets is the size of the data structures. A
fixed size for each data structure was used to generate dataset

α, whereas a varied size (i.e., up to a certain size) was used
for generating β dataset. For example, a size of 10 was used
to generate α for binary search tree. However, β consists of
binary search trees from size 1 up to 10. Datasets γ and δ are
like α and β, respectively, but with one-hot encoding format
[28].
One-hot encoding format For one-hot encoding, we repre-
sent each element of the original candidate vector using a
binary vector of length θ (number of possible values of that
element). For example, the SLL shown in Fig. 3 has a can-
didate vector of length 8. The value of each index represents
a node range from 0 to 3, representing four possibilities:
[null, Node 1, Node 2 and Node 3]. Index 1 (size of the
list) can have one value. Therefore, we create a candidate
vector consisting of 29 bits (4 bits to represent each of the
seven elements and 1 bit to represent size of the list). null
is represented by [1 0 0 0], Node 1 is represented by [0

1 0 0], Node 2 is represented by [0 0 1 0], and Node 3

is represented by [0 0 0 1].
Table 1 shows the size for each of the data structures in

dataset α and γ . It also lists the total state space, the number
of valid structures explored, the number of invalid struc-
tures explored and the total number of structures explored by
Korat. Table 2 shows the size for each of the data structure in
dataset β and δ. It also lists the total state space, the number
of valid structures explored, the number of invalid struc-
tures explored and the total number of structures explored
by Korat.

3.2 TrainingMLmodels

Previously, we used four different train–test ratios to study
the effect of different ratios on the learnability of ML mod-
els. This study extends previous work by going to an extreme
ratio of 1:99. We want to investigate how the model would
perform under the extreme circumstances where it is trained
on just 1% of the dataset and tested on the rest of 99%. To
our knowledge, this study is first to evaluate the learnabil-
ity of ML models with such a small percentage of dataset
kept for training. We also explored hyper-parameter tuning.
We did find that performance metrics improve. However, the
small increase in performance metrics is offset by a much
larger time taken byMLmodels to train. Therefore, this study
reports the results of ML models using default settings. In
addition, Scikit-Learn library [57] was used for training and
testingMLmodels. Table 3 shows the parameters used during
the training of each ML model. Figure 4 gives an overview
of our experimental setup.

3.3 Performancemetrics

We report the counts of true positives (TP), false negatives
(FN), false positives (FP) and true negatives (TN). If a data

123

A study of learning likely data structure properties using machine learning models 607

Table 1 Candidate structures
explored by Korat for each data
structure subject (datasets α and
γ)

Subject Size State space Valid explored Invalid explored Total explored

BH 7 2109 107,416 154,372 261,788

BST 10 2105 16,796 155,439,076 155,455,872

BT 10 272 16,796 798,304 815,100

DAG 6 2108 19,696 185,034 204,730

DS 5 239 41,546 372,309 413,855

FH 5 282 52,281 112,084 164,365

HA 6 223 13,139 51,394 64,533

RBT 10 2193 17,160 32,074,894 32,092,054

SL 8 293 12,870 90,258 103,128

SLL 9 272 21,147 268,177 289,324

Table 2 Candidate structures
explored by Korat for each data
structure subject (datasets β and
δ)

Subject Size State space Valid explored Invalid explored Total explored

BST 10 2109 223,191 216,457,718 216,680,909

BT 10 276 23,714 1,028,526 1,052,240

RBT 10 2196 18,439 10,925,390 10,943,829

SL 8 296 24,310 150,962 175,272

SLL 9 275 26,443 500,868 527,311

sample is a valid structure and classifier correctly predicts it
to be a valid structure, we count it as a TP. If a data sample
is a valid structure and classifier incorrectly predicts it to be
an invalid structure, we count it as a FN. If a data sample is
an invalid structure and classifier incorrectly predicts it to be
a valid structure, we count it as a FP. If a data sample is an
invalid structure and classifier correctly predicts it to be an
invalid structure, we count it as a TN. We use the traditional
metrics of accuracy (Acc), precision (Prec), recall (Recall)
and F1-score (F1). Accuracy is calculated as TP+TN

TP+TN+FP+FN .

Precision is calculated as TP
TP+FP . Recall is calculated as

TP
TP+FN . F1-score is calculated as 2∗Precision∗Recall

Precision+Recall .

3.4 Research questions

We answer the following research questions in our study.

– RQ1: Are certain ML models more suitable for learning
data structure properties?

– RQ2: How do ML models perform when trained with
different train–test ratios?

– RQ3: Are certain data structure properties more learn-
able than others?

– RQ4: Does the learnability of varied-size data structures
differ from the learnability of fixed-size data structures?

– RQ5: Does one-hot encoding representation impact the
learnability of data structure properties?

We report the average performance metrics in this section.
The train/test datasets, as well as detailed results and counts
of TP, FP, FN and TN, are available at https://github.com/
muhammadusman93/STTTKorat.
RQ1: Are certain ML models more suitable for learning
data structure properties?
Table 4 shows the performance of ML models for each
dataset. Figure 5 summarizes the accuracyof eachMLmodel.
We compare accuracy (across all four datasets) to seewhether
certain ML models are more suitable for learning data struc-
ture properties. For α dataset, DT performs slightly better
than MLP. However, for β,γ and δ datasets, MLP performs
the best. This might be because MLP does not make any
assumptions regarding the underlying probability density
functions or distributions of the data. MLP can learn nonlin-
ear complex functions and generalize well beyond training
data. Themedian accuracy for GBT andABT (0.98 and 0.96,
respectively) is slightly lower than median accuracy of DT
(0.99). However, on average ensemble trees, i.e., ABT, GBT
and RFT, perform better than DT because ensemble trees are
combinations of different decision trees and have better pre-
diction ability. SVM performs well with median accuracy
around 0.96 because it can learn complex problems using
kernel trick and scale well to high-dimensional data. LRC
is one of the best models (median accuracy of 0.95) because
LRC is less prone to over-fitting and performs extremelywell
if the dataset is linearly separable. KNN also performs well.
GNB performs poorly (median accuracy of 0.71) because
it assumes that the underlying distribution follows a Gaus-

123

https://github.com/muhammadusman93/STTTKorat
https://github.com/muhammadusman93/STTTKorat

608 M.Usman et al .

Table 3 Parameters for training ML models (Scikit-Learn library [57])

Models Parameter Description Value

DT criterion Criteria to measure quality of a split Gini

max_features Number of features considered for the best split n_features

min_impurity_split Threshold for early stopping in tree growth 0.0000001

min_samples_leaf Minimum samples required to be at a leaf node 1

min_samples_split Minimum samples required to split an internal node 2

splitter Select the best strategy to choose the split at each
node

Best

RFT criterion Criteria to measure quality of a split Gini

max_features Number of features considered for the best split sqrt(n_features)

min_impurity_split Threshold for early stopping in tree growth 0.0000001

min_samples_leaf Minimum samples required to be at a leaf node 1

min_samples_split Minimum samples required to split an internal node 2

n_estimators Number of trees in the forest 100

GBT criterion Function to measure the quality of a split Friedman_mse

learning_rate Learning rate 0.1

max_depth Maximum depth of individual regression estimators 3

max_features Number of features considered for the best split n_features

min_impurity_split Threshold for early stopping 0.0000001

min_samples_leaf Minimum samples required to be at a leaf node 1

min_samples_split Minimum samples required to split an internal node 2

n_estimators Number of boosting stages 100

subsample Fraction of samples used for fitting individual base
learner

1.0

tol Tolerance for early stopping 0.0001

ABT algorithm Algorithm SAMME.R

learning_rate Learning rate 1

n_estimators Maximum number of estimators at which boosting is
terminated

50

SVM C Regularization parameter 1.0

kernal Kernel function rbf

max_iter Limit on the number of iterations (−1 means no
limit)

−1

shrinking Whether to use shrinking True

tol Tolerance for stopping criterion 0.001

MLP activation Activation function Relu

alpha L2 regularization penalty 0.0001

batch_size Batch size min(200, n_samples)

beta_1 Exponential decay rate for estimates of first moment
vector in Adam

0.9

beta_2 Exponential decay rate for estimates of second
moment vector in Adam

0.999

epsilon Numerical stability in Adam 0.00000001

hidden_layer_sizes Number of units in each hidden layer, Number of
hidden layers (1)

(100)

learning_rate_init Initial learning rate 0.001

max_iter Number of iterations 200

n_iter_no_change Epochs after which training is stopped 10

(if there is no improvement in performance)

123

A study of learning likely data structure properties using machine learning models 609

Table 3 continued

Models Parameter Description Value

solver Solver Adam

tol Tolerance 0.0001

KNN algorithm Framework can choose the best algorithm auto

n_neighbors Number of neighbors to use for k-neighbors queries 5

p Power parameter for the Minkowski metric 2

(2 means Euclidean_distance)

weights Set equal weights to all neighborhood points uniform

GNB var_smoothing Portion of the largest variance of all features (added
to variances to improve calculation stability)

0.000000001

LRC C Inverse of regularization strength 1.0

fit_intercept Bias added to the decision function true

max_iter Maximum number of iterations taken by solver to
converge

100

penalty Regularization l2

solver Solver lbfgs

tolfloat Tolerance value 0.0001

QDA tol Threshold for rank estimation 0.0001

Fig. 4 Architecture of the experimental setup

Table 4 Average performance across all ten data structure subjects and five train–test ratios for each ML model

Models Acc α Prec α Recall α F1 α Acc β Prec β Recall β F1 β Acc γ Prec γ Recall γ F1 γ Acc δ Prec δ Recall δ F1 δ

DT 0.98 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.97 0.96 0.97 0.97 0.86 0.86 0.84 0.85

RFT 0.96 0.96 0.96 0.96 0.99 0.98 0.99 0.99 0.95 0.95 0.96 0.95 0.87 0.86 0.88 0.87

GBT 0.96 0.95 0.97 0.96 0.98 0.97 0.99 0.98 0.95 0.93 0.97 0.95 0.90 0.86 0.99 0.91

ABT 0.90 0.90 0.91 0.90 0.94 0.93 0.96 0.94 0.90 0.89 0.91 0.90 0.87 0.83 0.96 0.88

SVM 0.91 0.90 0.91 0.90 0.95 0.97 0.94 0.94 0.91 0.89 0.93 0.90 0.85 0.78 0.88 0.83

MLP 0.96 0.96 0.97 0.96 0.99 0.98 1.00 0.99 0.98 0.97 0.98 0.98 0.91 0.88 0.98 0.93

KNN 0.88 0.85 0.95 0.89 0.96 0.93 0.99 0.96 0.84 0.81 0.95 0.87 0.78 0.76 0.89 0.81

GNB 0.70 0.66 0.90 0.74 0.76 0.74 0.93 0.79 0.71 0.68 0.90 0.75 0.68 0.63 1.00 0.76

LRC 0.87 0.86 0.90 0.88 0.95 0.93 0.97 0.95 0.90 0.89 0.91 0.90 0.87 0.83 0.95 0.88

QDA 0.66 0.56 0.62 0.54 0.60 0.39 0.58 0.46 0.74 0.73 0.84 0.73 0.70 0.64 0.99 0.77

Bold values highlight the highest value for each column

123

610 M.Usman et al .

Fig. 5 Accuracy across all ten data structure subjects, five train–test ratios and four datasets for each ML model

Table 5 Average performance across all ten data structure subjects and ten ML models for each train–test ratio

Ratio Acc α Prec α Recall α F1 α Acc β Prec β Recall β F1 β Acc γ Prec γ Recall γ F1 γ Acc δ Prec δ Recall δ F1 δ

75:25 0.89 0.87 0.93 0.89 0.91 0.89 0.93 0.89 0.90 0.89 0.96 0.92 0.84 0.80 0.96 0.86

50:50 0.89 0.86 0.93 0.89 0.92 0.88 0.94 0.91 0.90 0.88 0.95 0.91 0.84 0.80 0.96 0.87

25:75 0.89 0.86 0.92 0.88 0.90 0.87 0.93 0.89 0.90 0.88 0.95 0.91 0.82 0.79 0.94 0.85

10:90 0.88 0.85 0.91 0.87 0.92 0.88 0.93 0.90 0.89 0.87 0.94 0.90 0.83 0.80 0.95 0.86

1:99 0.85 0.83 0.85 0.82 0.89 0.87 0.91 0.88 0.84 0.83 0.85 0.82 0.80 0.76 0.86 0.80

Bold values highlight the highest value for each column

sian distribution and our datasets do not necessarily have a
Gaussian distribution. Similarly, QDA performs the worst
(median accuracy of 0.58) because it works well only when
the datasets follow a normal distribution, while it is not the
case for our datasets.

In summary, we can conclude thatMLP, RFT,ABT,GBT,
DT, SVM, KNN and LRC are good models to learn data
structure properties. GNB and QDA performed the worst,
and study shows that they are not good for learning data
structure properties. Thus, we can say that certainMLmodels
are more suitable for learning data structure properties. And
this gives us good indications of which ML models to select
in learning data structure properties.
RQ2: How do ML models perform when trained with
different train–test ratios?
Table 5 summarizes the performance of ML models for
different train–test ratios. We compare how decreasing the
train–test ratio (from 75:25 to 1:99) impacts the learnability
of ML models. For α dataset, accuracy decreases by 4% and
F1-score decreases by 7%. For β dataset, accuracy decreases

by 2% and F1-score decreases by 1%. For γ dataset, accu-
racy decreases by 6% and F1-score decreases by 10%. For
δ dataset, accuracy decreases by 4% and F1-score decreases
by 6%. The decrease in accuracy is in the range of [2%, 6%]
and a decrease in F1-score is in the range of [1%, 10%]. This
shows that the performance of the ML models decreases, as
the train–test ratio decreases. This is expected because when
the machine learning model is trained on a smaller dataset, it
may not get all properties for a data structure. Only a limited
number of rules learned would result in bad prediction per-
formance. However, it is surprising to see that even with just
1% of the data used for training, accuracy and F1-score are
always above 0.79. This gives hints that data structure prop-
erties can be learned using a much smaller dataset, which
would allow us to learn data structures of much bigger sizes.
To summarize, these experiments show that ML models are
very good in learning data structure properties even with a
very small portion of data for training.
RQ3: Are certain data structure properties more learn-
able than others?

123

A study of learning likely data structure properties using machine learning models 611

Table 6 Average performance across all ten ML models and five train–test ratios for each data structure subject

Subjects Acc α Prec α Recall α F1 α Acc β Prec β Recall β F1 β Acc γ Prec γ Recall γ F1 γ Acc δ Prec δ Recall δ F1 δ

BH 0.98 0.97 0.99 0.98 – – – – 0.98 0.97 0.99 0.98 – – – –

BST 0.91 0.92 0.95 0.91 0.90 0.88 0.98 0.92 0.92 0.92 0.97 0.93 0.88 0.86 0.99 0.91

BT 0.80 0.73 0.82 0.76 0.91 0.86 0.87 0.86 0.87 0.85 0.93 0.88 0.77 0.71 0.87 0.78

DAG 0.81 0.80 0.88 0.83 – – – – 0.79 0.77 0.88 0.81 – – – –

DS 0.80 0.77 0.76 0.74 – – – – 0.81 0.80 0.78 0.76 – – – –

FH 0.83 0.81 0.93 0.86 – – – – 0.82 0.81 0.92 0.85 – – – –

HA 0.84 0.82 0.87 0.83 – – – – 0.84 0.82 0.87 0.83 – – – –

RBT 0.97 0.96 0.98 0.97 0.95 0.93 0.99 0.96 0.96 0.94 1.00 0.96 0.94 0.91 1.00 0.95

SL 0.90 0.90 1.00 0.93 0.87 0.86 0.96 0.89 0.91 0.90 1.00 0.93 0.86 0.85 0.96 0.89

SLL 0.94 0.89 0.90 0.89 0.92 0.87 0.88 0.87 0.95 0.94 0.99 0.96 0.70 0.63 0.86 0.72

The ”–” indicates that Korat cannot generate a varied-size data structure for a given subject
Bold values highlight the highest value for each column

Fig. 6 Accuracy across all ten ML models, five train–test ratios and four datasets for each data structure subject

Table 6 summarizes the performance of ML models for each
data structure, for each dataset. Figure 6 summarizes the
accuracy of each data structure subject. BST performs bet-
ter (median accuracy of 0.97) than BT (median accuracy of
0.90). On the one hand, BT might be more learnable since
the ML model only needs to learn 1 property, i.e., acyclicity
for BT, whereas the model needs to learn two properties, i.e.,
correct order property and acyclic property for BST. On the
other hand, learning that the nodes are in the correct order
is much easier than to learn that a tree is acyclic. Results
show that an ML model can differentiate lots of invalid BST
just based on the correct order property. SL is more learn-
able (median accuracy of 0.97) than DAG (median accuracy
of 0.81). Since it is easier for an ML model to recognize a

sorted list (bits in feature vector are in ascending order) than
to check whether a graph is acyclic. Overall, complex data
structures (BH, RBT, BST and SL) are more learnable ones.
We investigated that complex data structures have multiple
properties which makes classification even easier, while sim-
ple structures (DAG and BT) give only one or two properties
which makes the classification more difficult.

To summarize, BH and RBT are the most learnable prop-
erties. Study shows that DAG is harder to learn as compared
to other data structure properties. Thus, we can say that cer-
tain data structure properties are more learnable than other
data structure properties.
RQ4: Does the learnability of varied-size data structures
differ from the learnability of fixed-size data structures?

123

612 M.Usman et al .

Table 6 shows the performance of ML models for fixed-size
data structures (α) and varied-size data structures (β). Korat
only supports five varied-size data structures including BST,
BT, RBT, SL and SLL. We compare the change in perfor-
mance metrics when fixed-size data structures are replaced
by the corresponding varied-size data structures. Accuracy
increases by11%forBT; decreases by1%forBST; decreases
by 3% for SL; and decreases by 2% for RBT and SLL. We
can see that accuracy increases only in one subject and it
decreases in four subjects. (Maximum drop in accuracy is
3%.) This shows no significant differences between the two
types of data structures.

This is expected becauseMLmodels learn properties spe-
cific to the data structure subject regardless of its size. For
example, for binary search tree, it learns that there should
be no cycle in the tree and all the nodes should be in the
correct order and be reachable. However, it is not the size of
the tree that the model learns about. To summarize, experi-
mental results show that there is no significant learnability
difference between varied-size and fixed-size data structures.
RQ5: Does one-hot encoding representation impact the
learnability of data structure properties?
Table 6 summarizes the performance of ML models for each
encoding format, i.e., Korat’s default encoding (α andβ)with
one-hot encoding (γ and δ). We compare Korat’s default
encoding with one-hot encoding and see how the one-hot
encoding representation impacts the learnability ofMLmod-
els for both varied-size and fixed-size data structures.
Varied-size data structures Accuracy decreases by 2% for
BST; decreases by 1% for RBT and SL; decreases by 14% for
BT; and decreases by 22% for SLL. The decrease in accuracy
is in the range of [1%, 22%]. These results show that there is
a significant decrease in performance if the one-hot encoding
is applied. This is expected since one-hot encoding increases
the number of features which ML models would find it dif-
ficult to learn. To summarize, we can conclude that using
one-hot encoding representation reduces the learnability of
ML models for varied-size data structures.
Fixed-size data structures Accuracy increases by 1% for
BST, SL, SLL and DS; increases by 7% for BT ; decreases
by 1% for RBT and FH; decreases by 2% for DAG; and stays
the same forBHandHA.The accuracy increases in five out of
these ten fixed-size subjects. The change in accuracy is in the
range of [−2%, 7%]. These results show that there would be
a significant increase in performance if the one-hot encoding
is applied. These results are surprising as we expected that
one-hot encoding should decrease the performance of ML
models. One reason can be that linear classifiers like LRC
and GNB perform better if the distance between data sam-
ples is high. This is indeed the case with one-hot encoding
format. We believe that the reason for this result deserves
further investigation and analysis. To summarize, we could

say that using one-hot encoding representation improves the
learnability of ML models for fixed-size data structures.
Applications Our objective is to perform controlled exper-
iments to understand the potential role of ML methods in
learning data structure properties. These properties, once
learned, can be used to provide a run-time check to see
whether a program state at a particular point conforms to
the learned property. A trained classifier can also be used
when repOK is not available. These learned classifiers can
also provide checks to enable automated theorem proving
[12], error recovery [13,36], static analysis [24,58] and auto-
mated test input generation [4,38]. Test generation tools can
generate data structures and simply use trained ML models
to verify whether these structures are valid. We believe that
verification via trained ML models would be efficient com-
pared to executing numerous checks on each data structure
instance. Thus, the use of ML models in software analysis
holds a promising future and we expect that new techniques
would emerge to apply ML in analyzing and finding bugs in
software systems.

4 Threats to validity

In our experiments, we selected the scope such that at least
10,000 positive data samples were generated. However, the
machine learning models may perform differently if trained
and tested on scopes that generate millions of data samples.
We also used ten data structure subjects for evaluation. It is
highly important to extend this study on graphs and more
complex data structures like AVL trees. We also balanced
the proportion of positive and negative samples. It would be
interesting to see how themodel performswhen no balancing
technique is applied. The models may be biased in predict-
ing all samples as negative. It will be interesting to see how
machine learning models can be trained on data structures
of smaller sizes and then used to classify data structures of
bigger sizes. For example, we can train our models on binary
trees of size exactly 6 and then classify binary trees of size
exactly 10. Korat is a state-of-art tool used to generate data
structures and it always annotates valid and invalid data struc-
tures correctly, which means there is no noise in our datasets.
We may add some random noise to our datasets to study the
impact, which we leave as our future work.

5 Related work

Use of ML in software engineering is burgeoning [5,8,21,
24,41,59]. It is used in many applications, including auto-
matic program repair and bug detection. ML is also used to
learn graphs and relational properties [35]. Numerous frame-
works such as Vapnik–Chervonenkis [66] (VC dimension)

123

A study of learning likely data structure properties using machine learning models 613

and probably approximately correct (PAC) [65] have been
used to study learnability of ML models. Lot of work has
been done in the field of invariant generation [31] including
sketching [62] and program synthesis [3,27,42]. ML models
are believed to guide test generation programs in their search
[33,61]. There is also work in the field of static and dynamic
analysis [14,19,34,43,47,52,55,56,69].

Daikon [19,20] is a state-of-the-art technique used for the
invariant generation. It uses a collection of property tem-
plates, observes the program states and checks whether the
properties are satisfied. However, the technique has limited
applicability for structural properties. Derayft [40] extends
the work of Daikon and can efficiently work with data struc-
tures, although it requires a collection of property templates
which is often limited.

Malik et al. [41] used a support vector machine for charac-
terizing the program properties. While it requires the use of
complex graph spectra [6] techniques, their study was con-
fined to just oneMLmodel, which may not be generalized to
other ML models. More recent work [21] studied the use of
neural networks in learning data structures properties. They
used Randoop [49] for test generation and showed that ML
models perform better than Daikon [19] in some cases. How-
ever, only neural networks and six data structure properties
were studied. In contrast, our study involves ten data struc-
ture subjects and tenMLmodels with five different train–test
ratios. We also compare the learnability of varied-size data
structures with the learnability of fixed-size data structures.
Usman et al. recently introduced [63,64] a new approach to
quantify quality of trained models based on model counting
[26] and applied it in the context of properties of binary rela-
tions. We plan to employ model counting in future work to
build on our study in this paper.

6 Conclusion

This paper presented a systematic study of the learnability of
data structure properties. The study shows that while most
ML models are highly accurate in learning data structure
properties, some ML models such as quadratic discrimi-
nant analysis and Gaussian naive Bayes are not suitable
for learning these properties. It also found that decreasing
train–test ratio from 75:25 to 1:99 reduces accuracy by at
most 6%, which opens the possibility of learning data struc-
ture properties of larger sizes. Another finding is that certain
data structure properties are more learnable than others, e.g.,
binary heap and red black tree. Our study also compares
the learnability of varied-size data structures with the learn-
ability of fixed-size data structures. We did not find any
significant difference in the learnability of these two types of
data structures. We also investigate the performance of ML
models trained on different encodings: one-hot encoding and

Korat’s default encoding. Results show that one-hot encod-
ing representation hinders the performance of varied-size
data structures but improves the performance of fixed-size
data structures. Overall, these results show that the use of
ML models for learning data structure properties is highly
promising.

Acknowledgements We thank Rohan Garg, Emily Ginsburg, Michael
Herrington, TaraKuruvilla, RaghavPrakash and the anonymous review-
ers for helpful feedback and comments. This research was partially
supported by the US National Science Foundation under Grant Nos.
CCF-1704790 and CCF-1718903.

References

1. Altman, N.S.: An introduction to kernel and nearest-neighbor non-
parametric regression. Am. Stat. 46(3), 175–185 (1992)

2. Bacaër, N.: Verhulst and the logistic equation 01, 1838 (2011)
3. Bodik, R.: Program synthesis: opportunities for the next decade.

In: International Conference on Functional Programming, pp. 1–1
(2015)

4. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing
based on Java predicates. In: International Symposium on Software
Testing and Analysis, pp. 123–133 (2002)

5. Briand, L.C., Labiche, Y., Liu, X.: Using machine learning to sup-
port debugging with tarantula. In: International Symposium on
Software Reliability, pp. 137–146 (2007)

6. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New
York (2012)

7. Çelik, A., Pai, S., Khurshid, S., Gligoric, M.: Bounded exhaustive
test-input generation onGPUs. PACMPL 1(OOPSLA), 94:1–94:25
(2017)

8. Chen,Y.-F., Hong,C.-D., Lin,A.W., Rümmer, P.: Learning to prove
safety over parameterised concurrent systems. In: Formal Methods
in Computer Aided Design, pp. 76–83 (2017)

9. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of
C and verilog programs using boundedmodel checking. In: Design
Automation Conference, pp. 368–371 (2003)

10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn.
20(3), 273–297 (1995)

11. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: Dynamic sym-
bolic execution for invariant inference. In: InternationalConference
on Software Engineering, pp. 281–290 (2008)

12. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer,
J.: The lean theorem prover (system description). In: International
Conference on Automated Deduction, pp. 378–388 (2015)

13. Demsky, B., Rinard,M.C.: Automatic detection and repair of errors
in data structures. In:Conference onObject-OrientedProgramming
Systems, Languages and Applications, pp. 78–95 (2003)

14. Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant gen-
eration via abductive inference. In: International Conference on
Object Oriented Programming Systems Languages and Applica-
tions, pp. 443–456 (2013)

15. Dini, N., Yelen, C., Alrmaih, Z., Kulkarni, A., Khurshid, S.: Korat-
API: a framework to enhance korat to better support testing and
reliability techniques. In: International Symposium on Applied
Computing, pp. 1934–1943 (2018)

16. Dini, N., Yelen, C., Gligoric, M., Khurshid, S.: Extension-aware
automated testing based on imperative predicates. In: Conference
on Software Testing, Validation and Verification, pp. 25–36 (2019)

17. Dini, N., Yelen, C., Khurshid, S.: Optimizing parallel Korat using
invalid ranges. In: International Symposium on Model Checking
of Software, pp. 182–191 (2017)

123

614 M.Usman et al .

18. Elkarablieh, B., Garcia, I., Suen, Y.L., Sarfraz, K.: Assertion-based
repair of complex data structures. In: International Conference on
Automated Software Engineering, pp. 64–73 (2007)

19. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly
detecting relevant program invariants. In: International Conference
on Software Engineering, pp. 449–458 (2000)

20. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C.,
Tschantz,M.S.,Xiao,C.: TheDaikon system for dynamic detection
of likely invariants. Sci. Comput. Program. 69(1–3), 35–45 (2007)

21. Facundo, M., Degiovanni, R., Ponzio, P., Regis, G., Aguirre, N.,
Frias, M.F.: Training binary classifiers as data structure invariants.
In: International Conference on Software Engineering, pp. 759–
770 (2019)

22. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Syst.
Sci. 55(1), 119–139 (1997)

23. Friedman, J.H.: Greedy function approximation: A gradient boost-
ing machine. Ann. Statist. 29(5), 1189–1232 (2001)

24. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants
using decision trees and implication counterexamples. In: Sym-
posium on Principles of Programming Languages, pp. 499–512
(2016)

25. Godefroid, P.: Model checking for programming languages using
verisoft. In: Symposium on Principles of Programming Languages,
pp. 174–186 (1997)

26. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting (2008)
27. Gulwani, S.: Dimensions in program synthesis. In: International

Symposium on Principles and Practice of Declarative Program-
ming, pp. 13–24 (2010)

28. Guo, C., Berkhahn, F.: Entity embeddings of categorical variables.
CoRR (2016). arXiv:1604.06737

29. Hernandez, J., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: An
empirical study of oversampling and undersampling for instance
selection methods on imbalance datasets. In: Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications,
pp. 262–269. Springer (2013)

30. Ho, T.K.: Random decision forests. In: International Conference
on Document Analysis and Recognition (1995)

31. Hoder, K., Kovács, L., Voronkov, A.: Invariant generation in vam-
pire. In: Tools and Algorithms for the Construction and Analysis
of Systems, pp. 60–64. Springer (2011)

32. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In:
International Symposium on Software Testing and Analysis, pp.
14–25 (2000)

33. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided
component-based program synthesis. In: International Conference
on Software Engineering, pp. 215–224 (2010)

34. Jump, M., McKinley, K.S.: Dynamic shape analysis via degree
metrics. In: International Symposium on Memory Management,
pp. 119–128 (2009)

35. Kazemi, S.M., Poole, D.: Relnn: A deep neural model for relational
learning (2017)

36. Ke, Y., Stolee, K.T, Goues, C.L., Brun, Y.: Repairing programs
with semantic code search (T). In: International Conference on
Automated Software Engineering, pp. 295–306 (2015)

37. Korat GitHub repository. https://github.com/korattest/korat
38. Korel, B.: Automated software test data generation. Trans. Softw.

Eng. 16(8), 870–879 (1990)
39. Liskov, B., Guttag, J.V.: Program Development in Java-

Abstraction, Specification, and Object-Oriented Design. Addison-
Wesley, Boston (2001)

40. Malik, M., Pervaiz, A., Uzuncaova, E., Khurshid, S.: Deryaft: A
tool for generating representation invariants of structurally complex
data. In: International Conference on Software Engineering, pp.
859–862 (2008)

41. Malik,M.Z.: Dynamic shape analysis of program heap using graph
spectra: NIER track. In: International Conference on Software
Engineering, pp. 952–955 (2011)

42. Manna, Z., Waldinger, R.: A deductive approach to program syn-
thesis. ACM Trans. Program. Lang. Syst. 2(1), 90–121 (1980)

43. McMillan, K.L.: Quantified invariant generation using an inter-
polating saturation prover. In: Tools and Algorithms for the
Construction and Analysis of Systems, pp. 413–427 (2008)

44. Mera, E., Lopez-García, P., Hermenegildo, M.: Integrating soft-
ware testing and run-time checking in an assertion verification
framework. In: Logic Programming, pp. 281–295. Springer (2009)

45. Meyer, B.: Class invariants: concepts, problems, solutions. CoRR
(2016). arXiv:1608.07637

46. Misailovic, S., Milicevic, A., Petrovic, N., Khurshid, S., Marinov,
D.: Parallel test generation and execution with Korat. In: Sympo-
sium on the Foundations of Software Engineering, pp. 135–144
(2007)

47. Møller, A., Schwartzbach,M.I.: The pointer assertion logic engine.
In: Conference on Programming Language Design and Implemen-
tation, pp. 221–231 (2001)

48. Murtagh, F.: Multilayer perceptrons for classification and regres-
sion. Neurocomputing 2(5), 183–197 (1991)

49. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed
random test generation. In: International Conference on Software
Engineering, pp. 75–84 (2007)

50. Provost, F.: Machine learning from imbalanced data sets 101. In:
Proceedings of the AAAI Workshop on Imbalanced Data Sets, pp.
1–3 (2000)

51. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–
106 (1986)

52. Reynolds, J.C.: Separation logic: a logic for shared mutable data
structures. In: Symposium on Logic in Computer Science, pp. 55–
74 (2002)

53. Rish, I.: An empirical study of the naive bayes classifier. In: IJCAI,
pp. 3 (2001)

54. Robbins, H., Monro, S.: A stochastic approximation method. Ann.
Math. Stat. 22(3), 400–407 (1951)

55. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via
3-valued logic. In: Symposium on Principles of Programming Lan-
guages, pp. 105–118 (1999)

56. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop
invariant generation using gröbner bases. In: Symposium on Prin-
ciples of Programming Languages, pp. 318–329 (2004)

57. Scikit-Learn Library. https://scikit-learn.org/stable/. Accessed 18
Apr 2019

58. Si, X., Dai, H., Raghothaman, M., Naik, M., Le, S.: Learning loop
invariants for programverification. In: Conference onNeural Infor-
mation Processing Systems, pp. 7762–7773 (2018)

59. Si, X., Dai, H., Raghothaman, M., Naik, M., Le, S.: Learning loop
invariants for program verification. In: Advances in Neural Infor-
mation Processing Systems, pp. 7751–7762 (2018)

60. Siddiqui, J.H., Khurshid, S.: PKorat: Parallel generation of struc-
turally complex test inputs. In: International Conference on Soft-
ware Testing Verification and Validation, pp. 250–259 (2009)

61. Singh, S., Zhang, M., Khurshid, S.: Learning guided enumerative
synthesis for superoptimization. In: International Symposium on
Model Checking of Software, p. 172–192 (2019)

62. Solar-Lezama, A.: Program Synthesis by Sketching. PhD thesis
(2008)

63. Usman, M., Wang, W., Vasic, M., Wang, K., Vikalo, H., Khurshid,
S.: A study of the learnability of relational properties. In: 41st
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). To appear(2020)

64. Usman, M., Wang, W., Wang, K., Yelen, C., Dini, N., Khurshid,
S.: A study of learning data structure invariants using off-the-shelf

123

http://arxiv.org/abs/1604.06737
https://github.com/korattest/korat
http://arxiv.org/abs/1608.07637
https://scikit-learn.org/stable/

A study of learning likely data structure properties using machine learning models 615

tools. In: International Symposium on Model Checking of Soft-
ware, pp. 226–243 (2019)

65. Valiant, L.G.: A theory of the learnable. CACM 27(11) (1984)
66. Vapnik, V.N., Chervonenkis, A.Ya.: On the uniform convergence of

relative frequencies of events to their probabilities. In: Measures of
Complexity: Festschrift for Alexey Chervonenkis. Springer Inter-
national Publishing, Cham (2015). https://doi.org/10.1007/978-3-
319-21852-6_3

67. Visser, W., Havelund, K., Brat, G.P., Park, S.: Model checking
programs. In: International Conference on Automated Software
Engineering, pp. 3–12 (2000)

68. Wu, W., Mallet, Y., Walczak, B., Penninckx, W., Massart, D.L.,
Heuerding, S., Erni, F.: Comparison of regularized discriminant
analysis linear discriminant analysis and quadratic discriminant
analysis applied to nir data. Anal. Chim. Acta 329(3), 257–265
(1996)

69. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of
linked data structures. In: Conference on Programming Language
Design and Implementation, pp. 349–361 (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-21852-6_3
https://doi.org/10.1007/978-3-319-21852-6_3

	A study of learning likely data structure properties using machine learning models
	Abstract
	1 Introduction
	2 Background
	2.1 Korat
	2.2 Machine learning models
	2.2.1 Decision trees
	2.2.2 Random forest tree
	2.2.3 Gradient boosting tree
	2.2.4 Adaboost decision tree
	2.2.5 Support vector machine
	2.2.6 Multi-layer perceptron
	2.2.7 K-nearest neighbor
	2.2.8 Gaussian naive Bayes
	2.2.9 Logistic regression classifier
	2.2.10 Quadratic discriminant analysis

	2.3 Data structure encoding

	3 Experimental evaluation
	3.1 Generation of datasets
	3.2 Training ML models
	3.3 Performance metrics
	3.4 Research questions

	4 Threats to validity
	5 Related work
	6 Conclusion
	Acknowledgements
	References

